Pregunta
upstudy study bank question image url

  1. Evaluate , where is the region bounded by the ellipse
    by using the transformation

Ask by Bernard Vega. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of the integral is .

Solución

We start with the integral
where is the region bounded by the ellipse
A transformation is given by
We’ll follow these steps:

1. Expressing the Quadratic Form in :
Define
Then
Compute
Substitute these into the quadratic form:
Recall that
Thus,

2. Transforming the Region:
The original region is defined by
Using the new variables, this becomes
Thus the region transforms into the unit disk in the -plane.

3. Computing the Jacobian:
The transformation is
The Jacobian matrix is
Its determinant is
Since
the determinant becomes
Thus, the area element transforms as

4. Rewriting the Integral:
The integrand becomes
so the integral is

5. Converting to Polar Coordinates:
Let
with and . The area element becomes and
Thus the integral becomes
Evaluate the -integral:
Then the -integral:
So we have

Final Answer:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the integral over the region bounded by the ellipse using the transformation and , we will follow these steps:
  1. Change of Variables: The transformation is given by and . We need to express in terms of and .
  2. Jacobian Determinant: First, we compute the Jacobian determinant for the transformation to transform the area element .
The absolute value of the determinant is .
  1. Transform the Region: The equation of the ellipse in the transformed coordinates becomes simpler. You would substitute the expressions for and into the equation of the ellipse to describe the region .
  2. Integrate in New Coordinates: Now, change the integral bounds accordingly and evaluate the integral. The region will often change to a simpler bounded shape after transformation; for example, it might become a circle or rectangle.
  3. Final Evaluation: Substitute the transformed function into the integral, multiply by the Jacobian, and integrate over the new area defined by and .
This method will yield your desired double integral solution over the region defined by the original ellipse.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad