Pregunta
upstudy study bank question image url

Morgan Jennings, a geography professor, invests \( \$ 99,000 \) in a parcel of land that is expected to increase in value by 15 percent per year for the next ten years. He will take the proceeds and provide himself with a 18 -year annuity. Assuming a 15 percent interest rate, how much will this annuity be? (Do not round intermediate

Ask by Ryan Osborne. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The annuity will be approximately \$65,360 per year.

Solución

To determine the annual annuity Morgan Jennings will receive, we'll follow these steps: 1. **Calculate the Future Value (FV) of the Land Investment:** Morgan invests \$99,000 in land expected to appreciate at 15% annually for 10 years. The future value \( FV \) after 10 years is calculated using the formula: \[ FV = P \times (1 + r)^n \] Where: - \( P = \$99,000 \) - \( r = 0.15 \) (15%) - \( n = 10 \) years \[ FV = 99,000 \times (1.15)^{10} \approx 99,000 \times 4.04556 \approx \$400,510.215 \] 2. **Determine the Annual Annuity \( R \):** After 10 years, Morgan will convert the \$400,510.215 into an 18-year annuity with an annual interest rate of 15%. The present value \( P \) of an annuity is given by: \[ P = R \times \frac{1 - (1 + i)^{-n}}{i} \] Solving for \( R \): \[ R = \frac{P \times i}{1 - (1 + i)^{-n}} \] Where: - \( P = \$400,510.215 \) - \( i = 0.15 \) (15%) - \( n = 18 \) years First, calculate \( (1 + i)^{-n} \): \[ (1.15)^{-18} \approx \frac{1}{12.37545} \approx 0.0808 \] Then, compute the denominator: \[ 1 - 0.0808 = 0.9192 \] Now, calculate \( R \): \[ R = \frac{400,510.215 \times 0.15}{0.9192} \approx \frac{60,076.53225}{0.9192} \approx \$65,360 \] **Final Answer:** The annuity will be approximately **$65,360** per year.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine how much the annuity will be, we first need to calculate the future value of Morgan’s investment in the parcel of land after ten years of growth at 15% per year. The formula for the future value (FV) is given by: \[ FV = P \times (1 + r)^n \] Where: - \( P = 99,000 \) (the initial investment) - \( r = 0.15 \) (the annual growth rate) - \( n = 10 \) (the number of years) Calculating \( FV \): \[ FV = 99,000 \times (1 + 0.15)^{10} \] \[ FV = 99,000 \times (1.15)^{10} \] Using a calculator, \( (1.15)^{10} \approx 4.0456 \): \[ FV \approx 99,000 \times 4.0456 \approx 400,523.44 \] Now that we have the future value of the land, we can find out how much the annuity will be. The annuity is calculated using the present value of an annuity formula, rearranged to find the annuity payment (PMT): \[ PMT = \frac{FV \times r}{(1 - (1 + r)^{-n})} \] Here, we set: - \( FV = 400,523.44 \) - \( r = 0.15 \) - \( n = 18 \) Plugging in the values: \[ PMT = \frac{400,523.44 \times 0.15}{1 - (1 + 0.15)^{-18}} \] Calculating \( (1 + 0.15)^{-18} \): \[ (1.15)^{-18} \approx 0.1362 \] Thus, \[ PMT = \frac{400,523.44 \times 0.15}{1 - 0.1362} \] \[ PMT = \frac{60,078.52}{0.8638} \approx 69,528.07 \] Therefore, the annual annuity payment Morgan Jennings can provide himself with for 18 years is approximately **$69,528.07**.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad