Pregunta
upstudy study bank question image url

A body of mass \( m_{1} \mathrm{~kg} \), is placed on a rough horizontal table, the coefficient of kinetic friction between them is \( \mu_{\mathrm{k}} \) the body connected by a light string passing over a smooth pulley fixed at the edge of the table and another body of mass \( m_{2} \mathrm{~kg} \). is hanging vertically at the other end of the string, if the system moves with uniform velocity, then the coefficient of kinetic friction between the body and the table \( =\ldots \ldots \ldots \ldots \ldots \). \( \begin{array}{llll}\text { (a) } \frac{m_{1}}{m_{2}} & \text { (b) } m_{2}-m_{1} & \text { (c) } \frac{m_{2}}{m_{1}} & \text { (d) } m_{1} m_{2}\end{array} \)

Ask by Hart Campos. in Egypt
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The coefficient of kinetic friction is \( \mu_k = \frac{m_2}{m_1} \), so the correct answer is option (c).

Solución

**Step 1: Analyze the forces on \( m_1 \) (on the table)** For the body on the table, the forces acting horizontally are: - The tension \( T \) in the string pulling the body. - The kinetic friction force \( f_k \) opposing the motion, where \[ f_k = \mu_k m_1 g. \] Since the system moves with uniform velocity, the net force is zero, so: \[ T - \mu_k m_1 g = 0 \quad \Longrightarrow \quad T = \mu_k m_1 g. \] **Step 2: Analyze the forces on \( m_2 \) (hanging vertically)** For the hanging body, the forces are: - The gravitational force \( m_2 g \) downward. - The tension \( T \) in the string upward. Since the velocity is uniform (i.e., no acceleration), we have: \[ m_2 g - T = 0 \quad \Longrightarrow \quad T = m_2 g. \] **Step 3: Equate the expressions for \( T \)** From the equations for \( m_1 \) and \( m_2 \): \[ \mu_k m_1 g = m_2 g. \] Cancel \( g \) (assuming \( g \neq 0 \)): \[ \mu_k m_1 = m_2 \quad \Longrightarrow \quad \mu_k = \frac{m_2}{m_1}. \] **Answer:** The coefficient of kinetic friction is \[ \mu_k = \frac{m_{2}}{m_{1}}, \] which corresponds to option (c).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When the system moves with uniform velocity, it means that the forces acting on the bodies are balanced. The tension in the string pulling the mass \(m_1\) on the table is equal to the frictional force opposing its motion. By Newton's second law and the conditions of equilibrium, you find that the tension is also equal to the weight of the hanging mass \(m_2\). This gives us the equation \(\mu_k m_1 g = m_2 g\), leading to the conclusion that the coefficient of kinetic friction \(\mu_k\) can be expressed as \(\frac{m_2}{m_1}\). So when you look for an answer to the question posed, the correct choice is (c) \(\frac{m_{2}}{m_{1}}\). In practical applications, this scenario is important in various engineering fields where pulleys and friction play key roles, like in cranes, elevators, and pulling systems in machinery. Understanding how to calculate the right friction coefficients can help in designing systems that operate efficiently and safely under such conditions. Balancing forces and understanding how the friction works becomes crucial for safe operations in these systems!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad