Pregunta
upstudy study bank question image url

Ak 3.2 A certain standardized test's math scores have a bell-shaped distribution with a mean of 525 and a standard deviation of 114. Complete parts (a) through (c). (a) What percentage of standardized test scores is between 183 and 867 ? \( 99.7 \% \) (Round to one decimal place as needed.) \( 74.12 \%, 12.6 \) of 17 points (b) What percentage of standardized test scores is less than 183 or greater than 867 ? Points: 0 of 1 \( \% \) (Round to one decimal place as needed.)

Ask by Rogers Bradley. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Approximately 0.3% of standardized test scores are less than 183 or greater than 867.

Solución

We are given that the test scores are normally distributed with mean μ = 525 and standard deviation σ = 114. Step 1. Find the z-scores for 183 and 867.   For 183:     z = (183 - 525) / 114 = (-342)/114 = -3   For 867:     z = (867 - 525) / 114 = 342/114 = 3 Step 2. Apply the empirical 68-95-99.7 rule:   - About 99.7% of the data falls between z = -3 and z = +3.   - This means that 100% - 99.7% = 0.3% of the data lies outside that range. Answer for part (b): The percentage of standardized test scores that is less than 183 or greater than 867 is approximately 0.3% (rounded to one decimal place).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The area under a bell-shaped (normal) distribution curve can help us understand the percentages of scores falling within certain ranges. Given the mean (μ = 525) and standard deviation (σ = 114), we can apply the empirical rule. About 68% of scores fall within one standard deviation from the mean, 95% within two standard deviations, and 99.7% within three standard deviations. Since both 183 and 867 fall within three standard deviations of the mean (μ - 3σ to μ + 3σ), approximately 99.7% of scores are between these two values. To find the percentage of scores that are less than 183 or greater than 867, we can subtract the previously found percentage from 100%. Since we found that approximately 99.7% of scores are between 183 and 867, we know that the remaining scores will fall outside that range. Thus, the percentage of standardized test scores that are less than 183 or greater than 867 is \( 100\% - 99.7\% = 0.3\% \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad