(a) Four angles of a quadrilateral are \( 2 x, 4 x, 5 x \) and \( 7 x \), find the angles in degreg (b) Four angles of a quadrilateral are in the ratio \( 1: 2: 3: 3 \), find the angles ine degree.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve for the angles of the quadrilaterals, we first need to apply the fact that the sum of the angles in any quadrilateral is \( 360^\circ \). For part (a), we have the angles \( 2x, 4x, 5x, \) and \( 7x \). Setting up the equation: \[ 2x + 4x + 5x + 7x = 360^\circ \] This simplifies to: \[ 18x = 360^\circ \] Thus, \[ x = 20^\circ \] Now, substituting back to find the angles: - \( 2x = 40^\circ \) - \( 4x = 80^\circ \) - \( 5x = 100^\circ \) - \( 7x = 140^\circ \) So, the angles are \( 40^\circ, 80^\circ, 100^\circ, \) and \( 140^\circ \). For part (b), the angles are in the ratio \( 1:2:3:3 \). Let’s represent the angles as \( x, 2x, 3x, 3x \). Setting up the equation: \[ x + 2x + 3x + 3x = 360^\circ \] This simplifies to: \[ 9x = 360^\circ \] Thus, \[ x = 40^\circ \] Calculating the angles gives us: - \( x = 40^\circ \) - \( 2x = 80^\circ \) - \( 3x = 120^\circ \) - \( 3x = 120^\circ \) So the angles are \( 40^\circ, 80^\circ, 120^\circ, \) and \( 120^\circ \).
