Pregunta
upstudy study bank question image url

ALGEBRA \( W X Y Z \) is a kite. 49 If \( m \angle W X Y=120, m \angle W Z Y=4 x \), and \( m \angle Z W X=10 x \), find \( m \angle Z Y X \). 50. If \( m \angle W X Y=13 x+24, m \angle W Z Y=35 \), and \( m \angle Z W X=13 x+14 \), find \( m \angle Z Y X \).

Ask by Fernandez Elliott. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 49 Answer:** \( m \angle ZYX = 100^\circ \) **Problem 50 Answer:** \( m \angle ZYX = 105^\circ \)

Solución

Let's solve each problem step by step. --- ### **Problem 49** **Given:** - Quadrilateral \( WXYZ \) is a kite. - \( m \angle WXY = 120^\circ \) - \( m \angle WZY = 4x \) - \( m \angle ZWX = 10x \) **Find:** \( m \angle ZYX \) **Solution:** 1. **Understanding the Kite:** - In a kite, two pairs of adjacent sides are equal. - The sum of the interior angles of any quadrilateral is \( 360^\circ \). 2. **Identify Known Angles:** - \( \angle WXY \) is at vertex \( X \) and measures \( 120^\circ \). - \( \angle WZY \) is at vertex \( Z \) and measures \( 4x \). - \( \angle ZWX \) is at vertex \( W \) and measures \( 10x \). 3. **Calculate the Remaining Angle at Vertex \( Y \):** - Let \( \angle ZYX = y \). - Sum of all angles in the kite: \[ 10x + 120 + 4x + y = 360^\circ \] \[ 14x + y = 240^\circ \quad \Rightarrow \quad y = 240^\circ - 14x \] 4. **Apply Kite Property:** - In a kite, the angles at \( W \) and \( Y \) are equal. \[ y = 10x \] \[ 10x = 240^\circ - 14x \quad \Rightarrow \quad 24x = 240^\circ \quad \Rightarrow \quad x = 10 \] 5. **Find \( \angle ZYX \):** \[ y = 10x = 10 \times 10 = 100^\circ \] **Answer:** \( m \angle ZYX = 100^\circ \) --- ### **Problem 50** **Given:** - Quadrilateral \( WXYZ \) is a kite. - \( m \angle WXY = 13x + 24^\circ \) - \( m \angle WZY = 35^\circ \) - \( m \angle ZWX = 13x + 14^\circ \) **Find:** \( m \angle ZYX \) **Solution:** 1. **Understanding the Kite:** - In a kite, two pairs of adjacent sides are equal. - The sum of the interior angles of any quadrilateral is \( 360^\circ \). 2. **Identify Known Angles:** - \( \angle WXY \) is at vertex \( X \) and measures \( 13x + 24^\circ \). - \( \angle WZY \) is at vertex \( Z \) and measures \( 35^\circ \). - \( \angle ZWX \) is at vertex \( W \) and measures \( 13x + 14^\circ \). 3. **Calculate the Remaining Angle at Vertex \( Y \):** - Let \( \angle ZYX = y \). - Sum of all angles in the kite: \[ (13x + 14) + (13x + 24) + 35 + y = 360^\circ \] \[ 26x + 73 + y = 360^\circ \quad \Rightarrow \quad y = 287^\circ - 26x \] 4. **Apply Kite Property:** - In a kite, the angles at \( W \) and \( Y \) are equal. \[ y = 13x + 14 \] \[ 13x + 14 = 287 - 26x \quad \Rightarrow \quad 39x = 273 \quad \Rightarrow \quad x = 7 \] 5. **Find \( \angle ZYX \):** \[ y = 13x + 14 = 13 \times 7 + 14 = 105^\circ \] **Answer:** \( m \angle ZYX = 105^\circ \) --- ### **Final Answers:** - **Problem 49 Answer:** \( m \angle ZYX = 100^\circ \) - **Problem 50 Answer:** \( m \angle ZYX = 105^\circ \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle the first problem, we know that in a kite, the opposite angles are equal, and the angles adjacent to one of the equal sides are supplementary. Starting from \(m \angle WXY = 120^\circ\), we can conclude that \(m \angle WZY = 60^\circ\) because \(120^\circ + m \angle WZY = 180^\circ\). Now, since \(m \angle WZY = 4x\), we set up the equation \(4x = 60^\circ\), giving us \(x = 15^\circ\). Now, for \(m \angle ZWX = 10x\), we find \(m \angle ZWX = 150^\circ\). Using the property of angles in triangles in the kite, \(m \angle ZYX = 180^\circ - m \angle WXY - m \angle ZWX = 180^\circ - 120^\circ - 150^\circ = 30^\circ\). For the second problem, we again use the properties of a kite. We know: \(m \angle WXY = 13x + 24\) and \(m \angle WZY = 35\). By the supplementary angle property, we have \(m \angle WXY + m \angle WZY = 180^\circ\). Therefore, \(13x + 24 + 35 = 180\) simplifies to \(13x + 59 = 180\). Solving for \(x\), we get \(13x = 121\) which leads to \(x = \frac{121}{13} \approx 9.31\). Next, substituting \(x\) back into \(m \angle ZWX = 13x + 14\) provides \(m \angle ZWX \approx 9.31*13 + 14 \approx 127.03^\circ\). Finally, we find \(m \angle ZYX = 180^\circ - (13x + 24) - (13x + 14) = 180^\circ - (2(13x) + 38)\). Calculate that for the final measure of \(m \angle ZYX\). Both problems showcase how kites have specific properties that make these angle calculations work like clockwork! Enjoy exploring the beautiful geometric patterns!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad