ALGEBRA \( W X Y Z \) is a kite. 49 If \( m \angle W X Y=120, m \angle W Z Y=4 x \), and \( m \angle Z W X=10 x \), find \( m \angle Z Y X \). 50. If \( m \angle W X Y=13 x+24, m \angle W Z Y=35 \), and \( m \angle Z W X=13 x+14 \), find \( m \angle Z Y X \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To tackle the first problem, we know that in a kite, the opposite angles are equal, and the angles adjacent to one of the equal sides are supplementary. Starting from \(m \angle WXY = 120^\circ\), we can conclude that \(m \angle WZY = 60^\circ\) because \(120^\circ + m \angle WZY = 180^\circ\). Now, since \(m \angle WZY = 4x\), we set up the equation \(4x = 60^\circ\), giving us \(x = 15^\circ\). Now, for \(m \angle ZWX = 10x\), we find \(m \angle ZWX = 150^\circ\). Using the property of angles in triangles in the kite, \(m \angle ZYX = 180^\circ - m \angle WXY - m \angle ZWX = 180^\circ - 120^\circ - 150^\circ = 30^\circ\). For the second problem, we again use the properties of a kite. We know: \(m \angle WXY = 13x + 24\) and \(m \angle WZY = 35\). By the supplementary angle property, we have \(m \angle WXY + m \angle WZY = 180^\circ\). Therefore, \(13x + 24 + 35 = 180\) simplifies to \(13x + 59 = 180\). Solving for \(x\), we get \(13x = 121\) which leads to \(x = \frac{121}{13} \approx 9.31\). Next, substituting \(x\) back into \(m \angle ZWX = 13x + 14\) provides \(m \angle ZWX \approx 9.31*13 + 14 \approx 127.03^\circ\). Finally, we find \(m \angle ZYX = 180^\circ - (13x + 24) - (13x + 14) = 180^\circ - (2(13x) + 38)\). Calculate that for the final measure of \(m \angle ZYX\). Both problems showcase how kites have specific properties that make these angle calculations work like clockwork! Enjoy exploring the beautiful geometric patterns!