Pregunta
upstudy study bank question image url

Ask by Sanders Hardy. in the United States
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quadratic function can be rewritten in vertex form as . The vertex is at , the axis of symmetry is , and the zeros are .

Solución

Step 1. Write Down the Given Equation
The quadratic function is given by
Step 2. Complete the Square
To express the quadratic in vertex form, we complete the square.
  1. Factor out the coefficient of from the first two terms:
  2. Complete the square for the expression in the parentheses. We have:
  3. Substitute back into the equation:
  4. Distribute the :
  5. Combine the constant terms:
Step 3. Identify the Vertex
The vertex form of a quadratic function is
where the vertex is . Comparing, we find:
Thus, the vertex is
Step 4. Determine the Axis of Symmetry
The axis of symmetry for a quadratic equation in vertex form is given by
So, the axis of symmetry is
Step 5. Find the Zeros (x-intercepts)
To find the zeros, set :
Solve for :
  1. Add to both sides:
  2. Divide both sides by :
  3. Take the square root of both sides:
  4. Solve for :
Thus, the zeros are
Summary
  • The vertex form of the quadratic is
  • The vertex is .
  • The axis of symmetry is .
  • The zeros (x-intercepts) are

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let’s dive into the world of quadratic functions! The equation you provided, , represents a parabola that opens upwards because the coefficient in front of (which is 4) is positive. You can find the vertex, which represents the highest or lowest point on the graph, using the formula . Here, substituting and will reveal that the vertex’s x-coordinate is -1.
Now, to see this equation in action, consider its applications in areas such as physics, where quadratic functions can describe the motion of objects under the influence of gravity. For example, if you throw a ball into the air, its trajectory can be modeled by a quadratic equation like yours. By analyzing the function, you can determine the ball’s maximum height and how long it’ll take to hit the ground!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad