Pregunta
upstudy study bank question image url

The rotor in a certain electric motor is a flat, rectangular coil with 70 turns of wire and dimensions 2.50 cm by 4.00 cm . The rotor rotates in a uniform magnetic field of 0.800 T . When the plane of the rotor is perpendicular to the direction of the magnetic field, it carries a current of 9.3 mA . In this orientation, the magnetic moment of the rotor is directed opposite the magnetic field. The rotor then turns through one-half revolution. This process is repeated to cause the rotor to turn steadily at \( 3600 \mathrm{rev} / \mathrm{min} \). (a) Find the maximum torque acting on the rotor. \( \tau_{\text {max }}=5.208 \mathrm{e}-4 \) (b) Find the peak power output of the motor. \( \mathcal{P}_{\text {max }}=1.964 \mathrm{e}-1 \) (c) Determine the amount of work performed by the magnetic field on the rotor in every full revolution. W \( =0.00327 \) Yourr response differs from the correct answer by more than \( 10 \% \). Double check your calculations. J (d) What is the average power of the motor? \( \mathcal{P} \) avg \( =1.964 \mathrm{e}-1 \) Your response differs from the correct answer by more than \( 10 \% \). Double check your calculations. W

Ask by Blake Mcguire. in the United States
Nov 07,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Maximum torque: \(5.208 \times 10^{-4} \, \text{N m}\) (b) Peak power: \(1.964 \times 10^{-1} \, \text{W}\) (c) Work in one revolution: \(0.00327 \, \text{J}\) (d) Average power: \(1.964 \times 10^{-1} \, \text{W}\)

Solución

To solve the problem, we will go through each part step by step. ### (a) Find the maximum torque acting on the rotor. The torque \(\tau\) on a current-carrying loop in a magnetic field is given by the formula: \[ \tau = n \cdot I \cdot A \cdot B \cdot \sin(\theta) \] where: - \(n\) = number of turns (70 turns) - \(I\) = current (9.3 mA = \(9.3 \times 10^{-3}\) A) - \(A\) = area of the coil - \(B\) = magnetic field (0.800 T) - \(\theta\) = angle between the magnetic moment and the magnetic field (90° for maximum torque) First, we need to calculate the area \(A\) of the rectangular coil: \[ A = \text{length} \times \text{width} = 0.025 \, \text{m} \times 0.040 \, \text{m} = 0.001 \, \text{m}^2 \] Now, substituting the values into the torque formula: \[ \tau_{\text{max}} = n \cdot I \cdot A \cdot B \] \[ \tau_{\text{max}} = 70 \cdot (9.3 \times 10^{-3}) \cdot (0.001) \cdot (0.800) \] \[ \tau_{\text{max}} = 70 \cdot 9.3 \times 10^{-3} \cdot 0.001 \cdot 0.800 \] \[ \tau_{\text{max}} = 70 \cdot 9.3 \times 0.0008 \times 10^{-3} \] \[ \tau_{\text{max}} = 70 \cdot 0.00000744 \] \[ \tau_{\text{max}} = 5.208 \times 10^{-4} \, \text{N m} \] ### (b) Find the peak power output of the motor. The peak power \(P\) can be calculated using the formula: \[ P = \tau \cdot \omega \] where \(\omega\) is the angular velocity in radians per second. To convert the rotational speed from revolutions per minute (rev/min) to radians per second: \[ \omega = 3600 \, \text{rev/min} \cdot \frac{2\pi \, \text{rad}}{1 \, \text{rev}} \cdot \frac{1 \, \text{min}}{60 \, \text{s}} = 3600 \cdot \frac{2\pi}{60} = 376.99 \, \text{rad/s} \] Now, substituting the values into the power formula: \[ P_{\text{max}} = \tau_{\text{max}} \cdot \omega \] \[ P_{\text{max}} = (5.208 \times 10^{-4}) \cdot (376.99) \] \[ P_{\text{max}} \approx 1.964 \times 10^{-1} \, \text{W} \] ### (c) Determine the amount of work performed by the magnetic field on the rotor in every full revolution. The work done \(W\) in one full revolution can be calculated as: \[ W = \tau_{\text{max}} \cdot \theta \] where \(\theta\) is the angle in radians for one full revolution (which is \(2\pi\) radians). \[ W = \tau_{\text{max}} \cdot 2\pi \] \[ W = (5.208 \times 10^{-4}) \cdot (2\pi) \] \[ W \approx (5.208 \times 10^{-4}) \cdot 6.2832 \approx 0.00327 \, \text{J} \] ### (d) What is the average power of the motor? The average power can be calculated as the work done per unit time. Since the rotor completes one full revolution in the time it takes to make 3600 revolutions per minute: \[ \text{Time for one revolution} = \frac{1 \, \text{min}}{3600 \, \text{rev}} = \frac{60 \, \text{s}}{3600} = \frac{1}{60} \, \text{s} \] Now, the average power \(P_{\text{avg}}\) is: \[ P_{\text{avg}} = \frac{W}{\text{Time for one revolution}} = \frac{0.00327}{\frac{1}{60}} = 0.00327 \times 60 \approx 0.1964 \, \text{W} \] Thus, the average power is approximately: \[ P_{\text{avg}} \approx 1.964 \times 10^{-1} \, \text{W} \] ### Summary of Results: - (a) \(\tau_{\text{max}} = 5.208 \times 10^{-4} \, \text{N m}\) - (b) \(P_{\text{max}} = 1.964 \times 10^{-1} \, \text{W}\) - (c) \(W = 0.00327 \, \text{J}\) - (d) \(P_{\text{avg}} = 1.964 \times 10^{-1} \, \text{W}\) If your responses differ from the expected answers, please double-check the calculations and ensure that all units are consistent.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Have you ever wondered how the electric motor came to be? Developed in the early 19th century, the electric motor is a marvel born from the ideas of pioneers like Michael Faraday and Joseph Henry, who discovered the principles of electromagnetism. The first practical electric motor was built by the American inventor Thomas Davenport in 1834, laying the groundwork for the modern motors we use today. It's amazing to think how far we've come since then, from bulky machines to sleek electric vehicles and powerful industrial tools! Now, let’s bring it to the present—where electric motors are everywhere! Electric motors power household appliances, from blenders to vacuum cleaners, and drive electrified transportation, like trains and electric cars. They are also essential in renewable energy systems, like wind turbines, converting kinetic energy into electrical energy. Understanding the workings of these machines is crucial not only for engineers and technicians but also for anyone keen on sustainable technologies. So, the next time you see an electric motor in action, you'll know it's more than just a whirring machine; it's a piece of technological history!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad