Pregunta
upstudy study bank question image url

Question 7 You need to buy two circular tables for your house. The small table has a diameter of 5 feet and the large table has a radius of 4 feet. How much greater, in square feet, is the area of the large table than the small table? - Use 3.14 to approximate \( \pi \) in your calculations. - Round approximated answers to the nearest hundredth place (two decimals)

Ask by Gross King. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The large table has an area that is 30.62 square feet greater than the small table.

Solución

To find the difference in area between the two tables, follow these steps: 1. For the small table: - Diameter = 5 feet, so the radius is 5 ÷ 2 = 2.5 feet. - Area = π × (radius)² = 3.14 × (2.5)² = 3.14 × 6.25 = 19.625 square feet. 2. For the large table: - Radius = 4 feet. - Area = π × (radius)² = 3.14 × (4)² = 3.14 × 16 = 50.24 square feet. 3. Difference in the areas: - Difference = Area(large) – Area(small) = 50.24 – 19.625 = 30.615 square feet. - Rounding to the nearest hundredth gives 30.62 square feet. Thus, the area of the large table is approximately 30.62 square feet greater than that of the small table.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area of the small table, we use the formula for the area of a circle: \( A = \pi r^2 \). The radius of the small table is half of its diameter, which is \( 5/2 = 2.5 \) feet. So, the area of the small table is \( A_s = 3.14 \times (2.5)^2 = 3.14 \times 6.25 = 19.625 \) square feet. For the large table, the radius is already given as 4 feet, so we use the same formula: \( A_l = 3.14 \times (4)^2 = 3.14 \times 16 = 50.24 \) square feet. To find how much greater the area of the large table is than the small table, we subtract the area of the small table from the area of the large table: \( 50.24 - 19.625 = 30.615 \). Rounding to the nearest hundredth, the area difference is approximately **30.62 square feet**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad