Pregunta

Confidence in banks: A news poll conducted in 2012 asked a random sample of 1220 adults in the United States how much confidence they had in banks and other financial institutions. A total of 156 adults said that they had a great deal of confidence. An economist claims that greater than \( 12 \% \) of U.S. adults have a great deal of confidence in banks. Can you conclude that the economist's claim is true? Use both \( \alpha=0.10 \) and \( \alpha=0.01 \) levels of significance and the critical value method with the table. Part: \( 0 / 5 \) Part 1 of 5 State the appropriate null and alternate hypotheses. \[ H_{0}: p=0.12 \] \[ H_{1}: p>0.12 \] This hypothesis test is a \( \square \) right-tailed test. प< \( <1 \) [1> \( \square=\square \) \( \square * \square \) p \( \square \) \( \square \)

Ask by Vaughn Martinez. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Null hypothesis: \( H_{0}: p = 0.12 \) Alternate hypothesis: \( H_{1}: p > 0.12 \) This is a right-tailed test.

Solución

We're testing whether the proportion (p) is greater than 0.12. The hypotheses are set up as follows:   Null hypothesis: H₀: p = 0.12   Alternate hypothesis: H₁: p > 0.12 Because the alternate hypothesis specifies that p is greater than 0.12, this is a right-tailed test.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To test the economist's claim, we need to first check the calculations and conditions surrounding the hypotheses. The null hypothesis states that the proportion of U.S. adults with a great deal of confidence in banks is equal to 12%, while the alternative hypothesis suggests that it is greater than 12%. This sets up our investigation correctly right from the start! Next, we need to calculate the sample proportion \( \hat{p} \). With 156 out of 1220 adults expressing confidence, we find: \[ \hat{p} = \frac{156}{1220} \approx 0.1287. \] This is slightly greater than 0.12. We will now perform our test at both significance levels by calculating the test statistic using the formula for the z-score, followed by comparing it to the critical z-values for either \( \alpha = 0.10 \) and \( \alpha = 0.01 \). Time to crunch some numbers and make our decision!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad