Pregunta
upstudy study bank question image url

2. Determine if the Mean Value Theorem can be applied theorem . If it cannot, explain why not. (i) \( y=(x-3)^{\frac{2}{3}},[1,4] \) (ii) \( y=-(-5 x+25)^{\frac{1}{2}},[3,5] \)

Ask by Hall Bernard. in Myanmar
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Problem (i):** Cannot apply the Mean Value Theorem to \( y = (x - 3)^{2/3} \) on [1, 4] because the function is not differentiable at \( x = 3 \). **Problem (ii):** Can apply the Mean Value Theorem to \( y = -\sqrt{-5x + 25} \) on [3, 5] since the function is continuous and differentiable on the interval.

Solución

To determine whether the **Mean Value Theorem (MVT)** can be applied to each function on the given intervals, we need to verify two key conditions: 1. **Continuity** on the closed interval \([a, b]\). 2. **Differentiability** on the open interval \((a, b)\). The **Mean Value Theorem** states that if a function satisfies these two conditions, then there exists at least one point \(c \in (a, b)\) where the instantaneous rate of change (derivative) equals the average rate of change over \([a, b]\). Let's analyze each function: --- ### (i) \( y = (x - 3)^{\frac{2}{3}} \) on \([1, 4]\) 1. **Continuity:** - The function \( y = (x - 3)^{\frac{2}{3}} \) is continuous for all real numbers \(x\) because it is a composition of continuous functions (polynomial and root functions). 2. **Differentiability:** - Compute the derivative: \[ y' = \frac{2}{3}(x - 3)^{-\frac{1}{3}} \] - The derivative \( y' \) is undefined at \( x = 3 \) because it involves division by zero (\( (x - 3)^{-\frac{1}{3}} \) becomes infinite as \( x \) approaches 3). - Since \( x = 3 \) lies within the open interval \((1, 4)\), the function is **not differentiable** at this point. 3. **Conclusion:** - **MVT cannot be applied** because the function fails to be differentiable on the entire open interval \((1, 4)\). --- ### (ii) \( y = -\sqrt{-5x + 25} \) on \([3, 5]\) 1. **Continuity:** - The expression inside the square root, \(-5x + 25\), must be non-negative: \[ -5x + 25 \geq 0 \Rightarrow x \leq 5 \] - On the interval \([3, 5]\), this condition is satisfied (since \(x \leq 5\)), ensuring that \( y \) is real and continuous. 2. **Differentiability:** - Compute the derivative: \[ y' = \frac{d}{dx} \left( -\sqrt{-5x + 25} \right) = -\frac{1}{2}(-5x + 25)^{-\frac{1}{2}} \cdot (-5) = \frac{5}{2\sqrt{-5x + 25}} \] - The derivative \( y' \) is defined for all \( x \in (3, 5) \) because \(-5x + 25 > 0\) in this open interval, ensuring that the denominator never becomes zero. - Thus, \( y \) is **differentiable** on the open interval \((3, 5)\). 3. **Conclusion:** - **MVT can be applied** because the function is both continuous on \([3, 5]\) and differentiable on \((3, 5)\). --- ### Summary - **(i)** The Mean Value Theorem **cannot** be applied to \( y = (x - 3)^{\frac{2}{3}} \) on \([1, 4]\) because the function is not differentiable at \( x = 3 \), which lies within the interval. - **(ii)** The Mean Value Theorem **can** be applied to \( y = -\sqrt{-5x + 25} \) on \([3, 5]\) since the function is continuous on \([3, 5]\) and differentiable on \((3, 5)\). Answer: Problem (i) Answer: The Mean Value Theorem cannot be applied to \( y = (x - 3)^{2/3} \) on [1, 4] because the function is not differentiable at \( x = 3 \), which lies within the interval. Problem (ii) Answer: The Mean Value Theorem can be applied to \( y = -\sqrt{-5x + 25} \) on [3, 5] since the function is continuous on [3, 5] and differentiable on (3, 5).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

For the function \( y=(x-3)^{\frac{2}{3}} \) on the interval \([1,4]\), the Mean Value Theorem cannot be applied because the function is not continuous on the whole interval. Specifically, at \(x=3\), the function has a cusp. The derivative does not exist at that point, violating the necessary conditions for the Mean Value Theorem. In the case of \( y=-(-5x+25)^{\frac{1}{2}} \) over \([3,5]\), the Mean Value Theorem also fails to apply as the function is not continuous on this interval. At \(x=5\), the function evaluates to zero, but as \(x\) approaches \(5\) from the left, the output approaches an imaginary number, indicating a discontinuity. Thus, it doesn't meet the criteria for application.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad