Pregunta
upstudy study bank question image url

Consider the curve given by the equation

What symmetries does this curve display? Check all that
applicable.
symmetry about the -axis
symmetry about the -axis
no symmetry about the origin

Ask by Davison Riley. in the United States
Mar 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The curve is symmetric about the origin.

Solución

We start with the equation
  1. To check for symmetry about the -axis, replace with :
This is not equivalent to the original equation since the sign of the term has changed.
  1. To check for symmetry about the -axis, replace with :
Again, this does not match the original equation because the term has a different sign.
  1. To check for symmetry about the origin, replace with :
This is exactly the original left‐hand side of the equation, so the curve is symmetric about the origin.
Thus, the curve is not symmetric about the -axis or the -axis, and it is symmetric about the origin. Since the provided options are:
  • symmetry about the -axis,
  • symmetry about the -axis,
  • no symmetry about the origin,
none of these choices apply because the curve actually has symmetry about the origin.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the symmetries of the curve defined by the equation , we can apply some tests.
First, to check for symmetry about the -axis, we can substitute with in the equation. If the resulting equation is equivalent to the original, then the curve has symmetry about the -axis. Upon substituting, we find that this leads to a different expression, confirming no symmetry about the -axis.
Next, testing for symmetry about the -axis involves substituting with . If the equation remains unchanged, then the curve has symmetry about the -axis. In this case, substituting reveals that the equation remains unchanged, indicating symmetry about the -axis.
Lastly, to check for symmetry about the origin, we can substitute both and with their negatives. If the resulting equation equals the original, this shows symmetry about the origin. However, this substitution results in a different expression, confirming no symmetry about the origin.
From these findings, we conclude that the curve exhibits symmetry about the -axis, but not about the -axis or the origin.
Thus, the applicable symmetries are:
  • symmetry about the -axis
  • no symmetry about the origin

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad