Pregunta
upstudy study bank question image url

s) For the linear transformation \( L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) given by \[ L((x, y))=(x+2 y,-x, 0) \] find the matrix \( A_{B C} \) for \( L \) with respect to the bases \[ B=\{(1,3),(-2,4)\}, C=\{(1,1,1),(2,2,0),(3,0,0)\} \]

Ask by Kelley Bob. in Russia
Dec 16,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The matrix \( A_{B C} \) for the linear transformation \( L \) is: \[ A_{B C} = \begin{pmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{pmatrix} \]

Solución

To find the matrix \( A_{B C} \) for the linear transformation \( L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) with respect to the bases \( B \) and \( C \), we will follow these steps: 1. **Apply the transformation \( L \) to the basis vectors in \( B \)**. 2. **Express the results in terms of the basis \( C \)**. 3. **Form the matrix \( A_{B C} \) using the coefficients from the previous step**. ### Step 1: Apply \( L \) to the basis vectors in \( B \) The basis \( B \) consists of the vectors \( (1, 3) \) and \( (-2, 4) \). 1. For the first basis vector \( (1, 3) \): \[ L((1, 3)) = (1 + 2 \cdot 3, -1, 0) = (1 + 6, -1, 0) = (7, -1, 0) \] 2. For the second basis vector \( (-2, 4) \): \[ L((-2, 4)) = (-2 + 2 \cdot 4, -(-2), 0) = (-2 + 8, 2, 0) = (6, 2, 0) \] ### Step 2: Express the results in terms of the basis \( C \) The basis \( C \) consists of the vectors \( (1, 1, 1) \), \( (2, 2, 0) \), and \( (3, 0, 0) \). We need to express \( (7, -1, 0) \) and \( (6, 2, 0) \) as linear combinations of the vectors in \( C \). #### Expressing \( (7, -1, 0) \) We want to find coefficients \( a, b, c \) such that: \[ a(1, 1, 1) + b(2, 2, 0) + c(3, 0, 0) = (7, -1, 0) \] This gives us the system of equations: 1. \( a + 2b + 3c = 7 \) 2. \( a + 2b = -1 \) 3. \( a = 0 \) From the third equation, we have \( a = 0 \). Substituting \( a = 0 \) into the second equation: \[ 0 + 2b = -1 \implies b = -\frac{1}{2} \] Now substituting \( a = 0 \) and \( b = -\frac{1}{2} \) into the first equation: \[ 0 + 2(-\frac{1}{2}) + 3c = 7 \implies -1 + 3c = 7 \implies 3c = 8 \implies c = \frac{8}{3} \] Thus, we have: \[ (7, -1, 0) = 0(1, 1, 1) - \frac{1}{2}(2, 2, 0) + \frac{8}{3}(3, 0, 0) \] This corresponds to the coefficients \( (0, -\frac{1}{2}, \frac{8}{3}) \). #### Expressing \( (6, 2, 0) \) We want to find coefficients \( d, e, f \) such that: \[ d(1, 1, 1) + e(2, 2, 0) + f(3, 0, 0) = (6, 2, 0) \] This gives us the system of equations: 1. \( d + 2e + 3f = 6 \) 2. \( d + 2e = 2 \) 3. \( d = 0 \) From the third equation, we have \( d = 0 \). Substituting \( d = 0 \) into the second equation: \[ 0 + 2e = 2 \implies e = 1 \] Now substituting \( d = 0 \) and \( e = 1 \) into the first equation: \[ 0 + 2(1) + 3f = 6 \implies 2 + 3f = 6 \implies 3f = 4 \implies f = \frac{4}{3} \] Thus, we have: \[ (6, 2, 0) = 0(1, 1, 1) + 1(2, 2, 0) + \frac{4}{3}(3, 0, 0) \] This corresponds to the coefficients \( (0, 1, \frac{4}{3}) \). ### Step 3: Form the matrix \( A_{B C} \) The matrix \( A_{B C} \) is formed by taking the coefficients we found for each transformed basis vector and placing them in columns: \[ A_{B C} = \begin{pmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{pmatrix} \] Thus, the final answer is: \[ A_{B C} = \begin{pmatrix} 0 & 0 \\ -\frac{1}{2} & 1 \\ \frac{8}{3} & \frac{4}{3} \end{pmatrix} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the matrix \( A_{B C} \) for the linear transformation \( L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) with respect to the bases \( B \) and \( C \), we follow these steps: 1. **Apply the Transformation to the Basis Vectors**: First, we need to apply \( L \) to each vector in the basis \( B \). - For \( (1, 3) \): \[ L((1, 3)) = (1 + 2 \times 3, -1, 0) = (1 + 6, -1, 0) = (7, -1, 0) \] - For \( (-2, 4) \): \[ L((-2, 4)) = (-2 + 2 \times 4, 2, 0) = (-2 + 8, 2, 0) = (6, 2, 0) \] Now we have: \[ L((1, 3)) = (7, -1, 0) \quad \text{and} \quad L((-2, 4)) = (6, 2, 0) \] 2. **Express Results in Terms of Basis \( C \)**: Next, we must express each of the results in terms of the basis \( C = \{(1, 1, 1), (2, 2, 0), (3, 0, 0)\}\). To find the coordinates of \( (7, -1, 0) \) in terms of the basis \( C \): \[ (7, -1, 0) = a(1, 1, 1) + b(2, 2, 0) + c(3, 0, 0) \] This leads to the system of equations: - \( a + 2b + 3c = 7 \) - \( a + 2b = -1 \) - \( a = 0 \) Solving this, we find \( a = 0 \), thus substituting: \[ 0 + 2b + 3c = 7 \quad \Rightarrow \quad 2b + 3c = 7 \] From \( 0 + 2b = -1 \) we have \( b = -\frac{1}{2} \). Substituting this into the first equation gives: \[ 2(-\frac{1}{2}) + 3c = 7 \quad \Rightarrow \quad -1 + 3c = 7 \quad \Rightarrow \quad 3c = 8 \quad \Rightarrow \quad c = \frac{8}{3} \] Therefore, \((7, -1, 0) = 0(1,1,1) - \frac{1}{2}(2,2,0) + \frac{8}{3}(3,0,0)\), whose coordinate vector in basis \( C \) is \( \begin{pmatrix} 0 \\ -\frac{1}{2} \\ \frac{8}{3} \end{pmatrix} \). Now, for \( (6, 2, 0) \): \[ (6, 2, 0) = a(1, 1, 1) + b(2, 2, 0) + c(3, 0, 0) \] We set up the equations: - \( a + 2b + 3c = 6 \) - \( a + 2b = 2 \) - \( a = 0 \) Again \( a = 0 \) leads to: \[ 0 + 2b + 3c = 6 \quad \Rightarrow \quad 2b + 3c = 6 \] From \( 0 + 2b = 2 \) we find \( b = 1 \). Then substituting into the first equation gives: \[ 2(1) + 3c = 6 \quad \Rightarrow \quad 2 + 3c = 6 \quad \Rightarrow \quad 3c = 4 \quad \Rightarrow \quad c = \frac{4}{3} \] Thus, \((6, 2, 0) = 0(

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad