Pregunta
upstudy study bank question image url

1). Let \( x_{2}, x_{2}, \ldots x_{n} \) be an i.i.d. sample from a Poisson distribution with parameter \( \mu \) \[ P\left(X=\frac{x}{\mu}\right)=\frac{\mu^{x} e^{-\mu}}{x!} \] i.e. Find the MLE of the parameter \( \mu \)

Ask by Schmidt Lane. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The MLE of μ is the sample mean, calculated as (1/n) times the sum of all observations.

Solución

To find the maximum likelihood estimator (MLE) for μ given an i.i.d. sample x₁, x₂, …, xₙ from a Poisson distribution with probability mass function   P(X = x) = (μˣ e^(–μ))/(x!),   for x = 0, 1, 2, …, we proceed as follows: 1. Write down the likelihood function for the sample:   L(μ) = ∏[i=1 to n] P(xᵢ) = ∏[i=1 to n] (μ^(xᵢ) e^(–μ))/(xᵢ!)     = μ^(∑xᵢ) e^(–nμ) / ∏[i=1 to n] (xᵢ!). 2. Simplify by taking the log-likelihood function ℓ(μ):   ℓ(μ) = log L(μ) = (∑xᵢ) log(μ) – nμ – ∑[i=1 to n] log(xᵢ!). 3. Differentiate ℓ(μ) with respect to μ and set the derivative equal to 0 to find the maximizer:   dℓ/dμ = (∑xᵢ)/μ – n.   Setting dℓ/dμ = 0 gives:   (∑xᵢ)/μ – n = 0 ⟹ (∑xᵢ)/μ = n ⟹ μ = (∑xᵢ)/n. 4. Therefore, the MLE of μ is given by:   μ̂ = (1/n) ∑[i=1 to n] xᵢ,   which is simply the sample mean. Thus, the maximum likelihood estimator of μ is the sample average.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the maximum likelihood estimate (MLE) of the parameter \( \mu \) for an i.i.d. sample from a Poisson distribution, we start with the likelihood function for the sample \( x_1, x_2, \ldots, x_n \) given by: \[ L(\mu) = \prod_{i=1}^{n} \frac{\mu^{x_i} e^{-\mu}}{x_i!} \] This can be simplified to: \[ L(\mu) = \frac{\mu^{\sum x_i} e^{-n\mu}}{\prod_{i=1}^{n} x_i!} \] To find the MLE, we take the logarithm of the likelihood function (the log-likelihood): \[ \ell(\mu) = \log L(\mu) = \sum_{i=1}^{n} \left( x_i \log \mu - \mu - \log(x_i!) \right) \] We can focus on the terms that involve \( \mu \): \[ \ell(\mu) = \left( \sum_{i=1}^{n} x_i \right) \log \mu - n\mu - \sum_{i=1}^{n} \log(x_i!) \] Next, we differentiate the log-likelihood with respect to \( \mu \) and set it equal to zero: \[ \frac{d\ell}{d\mu} = \frac{\sum_{i=1}^{n} x_i}{\mu} - n = 0 \] Solving for \( \mu \), we get: \[ \frac{\sum_{i=1}^{n} x_i}{\mu} = n \implies \mu = \frac{\sum_{i=1}^{n} x_i}{n} \] Thus, the MLE of \( \mu \) is: \[ \hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \] In summary, the MLE of the parameter \( \mu \) for a Poisson distribution based on the sample \( x_1, x_2, \ldots, x_n \) is simply the sample mean \( \bar{x} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad