Find the length of the arc, \( s \), on a circle of radius r intercepted by a central angle \( \theta \). Express the arc length in terms of \( \pi \). Then round your answer to two decimal places. Radius, \( r=20 \) inches; Central angle, \( \theta=10^{\circ} \) \( s=\square \) inches (Simplify your answer. Type an exact answer in terms of \( \pi \). Use integers or fractions for any numbers in the expression.) \( s=\square \) inches
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the length of the arc \( s \) intercepted by a central angle \( \theta \) on a circle of radius \( r \), we use the formula: \[ s = r \theta \] However, the angle \( \theta \) must be in radians. To convert \( 10^{\circ} \) to radians, we use the conversion: \[ \theta \, (\text{radians}) = \theta \, (\text{degrees}) \times \frac{\pi}{180} \] So, \[ \theta = 10^{\circ} \times \frac{\pi}{180} = \frac{\pi}{18} \text{ radians} \] Now substituting back into the arc length formula: \[ s = 20 \times \frac{\pi}{18} = \frac{20\pi}{18} = \frac{10\pi}{9} \text{ inches} \] To round this to two decimal places, we calculate: \[ \frac{10\pi}{9} \approx \frac{10 \times 3.14}{9} \approx 3.49 \text{ inches} \] So, the exact and rounded arc lengths are: \( s = \frac{10\pi}{9} \) inches \( s \approx 3.49 \) inches
