Pregunta
B) Evaluate each function. 1) \( f(x)=(3 x-14)^{2} \); find \( f(11) \) 2) \( f(x)=-x^{2} \); find \( f(-5) \)
Ask by Lewis Ruiz. in the United States
Jan 30,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( f(11) = 361 \) and \( f(-5) = -25 \).
Solución
Certainly! Let's evaluate each function step by step.
---
### 1) \( f(x) = (3x - 14)^2 \); Find \( f(11) \)
**Step 1:** Substitute \( x = 11 \) into the function.
\[
f(11) = (3 \times 11 - 14)^2
\]
**Step 2:** Perform the multiplication inside the parentheses.
\[
3 \times 11 = 33
\]
So,
\[
f(11) = (33 - 14)^2
\]
**Step 3:** Subtract inside the parentheses.
\[
33 - 14 = 19
\]
\[
f(11) = 19^2
\]
**Step 4:** Square the result.
\[
19^2 = 361
\]
**Final Answer:**
\[
f(11) = 361
\]
---
### 2) \( f(x) = -x^2 \); Find \( f(-5) \)
**Step 1:** Substitute \( x = -5 \) into the function.
\[
f(-5) = -(-5)^2
\]
**Step 2:** Square the value inside the function.
\[
(-5)^2 = 25
\]
**Step 3:** Apply the negative sign.
\[
f(-5) = -25
\]
**Final Answer:**
\[
f(-5) = -25
\]
---
**Summary:**
1. \( f(11) = 361 \)
2. \( f(-5) = -25 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To evaluate \( f(11) \) for \( f(x) = (3x - 14)^{2} \), simply substitute \( x \) with 11. This gives you \( f(11) = (3 \times 11 - 14)^{2} = (33 - 14)^{2} = 19^{2} = 361 \). For \( f(-5) \) with the function \( f(x) = -x^{2} \), substitute \( x \) with -5. You’ll find \( f(-5) = -(-5)^{2} = -25 \). So, the result is \( f(-5) = -25 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium