Pregunta
In the figure, two 6.70 kg blocks are connected by a massless string over a pulley of radius 2.20 cm and rotational inertia
. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block’the
pulley’s axis is frictionless. When this system is released from rest, the pulley turns through 1.20 rad in 102 ms and the acceleration of
the blocks is constant. What are (a) the magnitude of the pulley’s angular acceleration, (b) the magnitude of either block’s acceleration,
© string tension
, and (d) string tension
? Assume free-fall acceleration to be equal to
.
(a) Number 230
(b) Number 5.06
© Number 31.8
(d) Number
(i Units
pulley’s axis is frictionless. When this system is released from rest, the pulley turns through 1.20 rad in 102 ms and the acceleration of
the blocks is constant. What are (a) the magnitude of the pulley’s angular acceleration, (b) the magnitude of either block’s acceleration,
© string tension
(a) Number 230
(b) Number 5.06
© Number 31.8
(d) Number
(i Units
Ask by Boyd Wood. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(a) The pulley’s angular acceleration is 230 rad/s².
(b) The acceleration of the blocks is 5.06 m/s².
© The tension
is 31.8 N.
(d) The tension
is 99.6 N.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To solve for the values you need, let’s go through the calculations step by step:
(a) To find the magnitude of the pulley’s angular acceleration (
):
We can use the formula:
We can use the formula:
Where
and
.
So,
So,
(b) To find the magnitude of either block’s acceleration (
):
The relationship between linear acceleration and angular acceleration is given by:
The relationship between linear acceleration and angular acceleration is given by:
Where
(2.20 cm converted to meters).
So,
So,
© To find string tension
(on the block descending):
Using Newton’s second law for the falling block:
Using Newton’s second law for the falling block:
Substituting
and
:
Calculating:
Thus,
(d) To find string tension
(on the block ascending):
Using Newton’s second law for the ascending block:
Using Newton’s second law for the ascending block:
Substituting values:
Calculating again:
Thus,
Here are your answers rounded to an appropriate number of significant figures:
- (a)
(angular acceleration) - (b)
(block’s acceleration) - ©
(tension ) - (d)
(tension )

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium