Pregunta
upstudy study bank question image url

A line passes through the origin, and is parallel to the line \( 3 y=-x+23 \). Write down its equation.

Ask by Sherman Parry. in New Zealand
Nov 07,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -\frac{1}{3}x \).

Solución

To find the equation of a line that passes through the origin and is parallel to the line given by the equation \( 3y = -x + 23 \), we first need to determine the slope of the given line. 1. **Rearranging the equation**: We can rewrite the equation in slope-intercept form \( y = mx + b \), where \( m \) is the slope. Starting with: \[ 3y = -x + 23 \] we divide both sides by 3: \[ y = -\frac{1}{3}x + \frac{23}{3} \] From this, we see that the slope \( m \) of the line is \( -\frac{1}{3} \). 2. **Finding the equation of the parallel line**: Since parallel lines have the same slope, the line we are looking for will also have a slope of \( -\frac{1}{3} \). The general form of a line passing through the origin (0, 0) is: \[ y = mx \] Substituting the slope we found: \[ y = -\frac{1}{3}x \] Thus, the equation of the line that passes through the origin and is parallel to the line \( 3y = -x + 23 \) is: \[ \boxed{y = -\frac{1}{3}x} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of a line that passes through the origin and is parallel to the line \(3y = -x + 23\), we first need to determine the slope of the given line. Rearranging the equation, we get \(y = -\frac{1}{3}x + \frac{23}{3}\). The slope here is \(-\frac{1}{3}\). Since parallel lines have the same slope, the slope of the new line will also be \(-\frac{1}{3}\). The equation of a line that passes through the origin (0,0) can be written as \(y = mx\), where \(m\) is the slope. Therefore, the equation of our line is: \[ y = -\frac{1}{3}x \]

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad