Pregunta
upstudy study bank question image url

The test statistic of \( z=1.72 \) is obtained when testing the claim that \( p \neq 0.486 \). a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed. b. Find the \( P \)-value. c. Using a significance level of \( \alpha=0.01 \), should we reject \( \mathrm{H}_{0} \) or should we fail to reject \( \mathrm{H}_{0} \) ? Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. a. This is a two-tailed test. b. P-value \( =\square \) (Round to three decimal places as needed.)

Ask by Cole Harris. in the United States
Nov 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. This is a two-tailed test. b. P-value \( = 0.085 \). c. We fail to reject \( \mathrm{H}_{0} \).

Solución

To address your questions step by step: ### a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed. Since the claim is that \( p \neq 0.486 \), this indicates that we are testing for a difference in either direction (greater than or less than). Therefore, this is a **two-tailed test**. ### b. Find the \( P \)-value. To find the \( P \)-value for a two-tailed test with a test statistic of \( z = 1.72 \), we need to find the area in both tails of the standard normal distribution. 1. First, we find the area to the right of \( z = 1.72 \): - Using the standard normal distribution table or a calculator, we find the cumulative probability for \( z = 1.72 \). - The cumulative probability \( P(Z < 1.72) \) is approximately \( 0.9573 \). 2. The area to the right of \( z = 1.72 \) is: \[ P(Z > 1.72) = 1 - P(Z < 1.72) = 1 - 0.9573 = 0.0427. \] 3. Since this is a two-tailed test, we need to double this area to account for both tails: \[ P\text{-value} = 2 \times P(Z > 1.72) = 2 \times 0.0427 = 0.0854. \] Thus, the \( P \)-value is approximately **0.085** (rounded to three decimal places). ### c. Using a significance level of \( \alpha=0.01 \), should we reject \( \mathrm{H}_{0} \) or should we fail to reject \( \mathrm{H}_{0} \)? To make a decision: - The \( P \)-value we calculated is \( 0.085 \). - The significance level \( \alpha \) is \( 0.01 \). Since \( 0.085 > 0.01 \), we **fail to reject \( \mathrm{H}_{0} \)**. ### Summary of Answers: a. This is a **two-tailed test**. b. \( P \)-value \( = 0.085 \) (rounded to three decimal places). c. We **fail to reject \( \mathrm{H}_{0} \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The hypothesis test is indeed a two-tailed test because you're testing if \( p \) is different from 0.486, indicating that you're considering deviations in both directions (greater than and less than). To find the \( P \)-value for a \( z \)-score of 1.72, you can refer to the standard normal distribution table. The area to the left of \( z = 1.72 \) is approximately 0.9573. Since it's a two-tailed test, you need to find the area in both tails. Therefore, the \( P \)-value is \( 2 \times (1 - 0.9573) = 2 \times 0.0427 = 0.0854 \), rounded to three decimal places: **0.085**. Given the significance level of \( \alpha = 0.01 \), since \( P\text{-value} (0.085) > \alpha (0.01) \), you would fail to reject \( \mathrm{H}_{0} \). So in summary: - a. This is a **two-tailed test**. - b. P-value \( = 0.085 \). - c. **Fail to reject \( \mathrm{H}_{0} \)**.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad