Pregunta
upstudy study bank question image url


The square roots, in trigonometric notation, are
.
(Type an exact answer, using radicals and as needed. Type any angle measures in
degrees. Use angle measures greater than or equal to 0 and less than 360 . Do not
include the degree symbol in your answer. Use integers or decimals for any
numbers in the expression. Use a comma to separate answers as needed.)
Try again.
First write the complex number in trigonometric notation. Then, solve for the
square roots of the number. The nth roots of a complex number ,
, are given by the following formula, where .

Ask by Williams Nunez. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The square roots of are:

Solución

We start with the complex number
We first write it in trigonometric form.
  1. Compute the modulus :
  2. Find the argument . Since the real part is positive and the imaginary part is negative,
    To express the angle in the interval we add :
Thus, the complex number in trigonometric form is
Now we find its square roots. In general, the th roots of a complex number
are given by
For the square roots :
  1. Compute the square root of the modulus:
  2. The two roots are given by:
    • For :
    • For :
Thus, the square roots of are:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To express the complex number in trigonometric notation, we start by finding the modulus and the argument . The modulus is calculated as:
The argument can be found with:
Thus, we can rewrite the complex number as
Next, to find the square roots, we apply the formula for the nth roots of a complex number with :
This yields:
  1. For :
  1. For :
So the square roots are:
Certainly, square roots of complex numbers are not just the numbers you might guess—imagine a treasure map where the coordinates lead to two hidden treasures! Each root represents a different pathway on the complex plane, helping you navigate through the mathematical wilderness with flair and style! The journey of finding roots, in fact, can also parlay into understanding multiples, relationships, and even how waves behave!
If you want to dive deeper into the world of complex numbers, consider exploring various resources such as books specifically dedicated to complex analysis, like “Visual Complex Analysis” by Tristan Needham. It’s filled with intriguing insights and beautiful illustrations that help clarify the abstractness of complex numbers, making it a thrilling read!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad