s default
My Courses
CRN 40938
Chapter 5 HW - Continuous Random Variables
Current score:
+Å Category: Homework
0/50 points
1) 2
3
4
5
6
7
8
9
10
Current learning objective: Continuous Probability Functions
Question 1
Practice similar questions
Score: 0 of 5 points
Consider the continuous probability density function defined by \( f(x)=5 \) on \( 0 \leq x \leq \frac{1}{5} \).
Then, \( P(0.18
Ask by Lee Nunez. in the United States
Feb 04,2025
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the probability \( P(0.18 < X < 0.2) \) using the given probability density function \( f(x) = 5 \) for \( 0 \leq x \leq \frac{1}{5} \), we need to consider the interval where \( f(x) \) is defined. Since \( 0.18 \) and \( 0.2 \) are outside the bounds of \( 0 \leq x \leq 0.2 \), the probability over this interval would be calculated as \( P(X) = \int_{0.18}^{0.2} f(x) \, dx \). However, since the function is defined only up to \( \frac{1}{5} = 0.2 \), the probability calculated actually equals zero because the function doesn’t exist in the specified range. If you want to calculate probabilities for this distribution correctly, remember that continuous probability functions only apply within their defined intervals. Always ensure your upper and lower bounds fit within these limits before proceeding with your calculations!