2 Find the distance between: a \( \mathrm{P}(4,0) \) and \( \mathrm{Q}(0,-3) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the distance between the points \( P(4,0) \) and \( Q(0,-3) \), you can use the distance formula, which is given by \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). Plugging the coordinates into this formula: \[ d = \sqrt{(0 - 4)^2 + (-3 - 0)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5. \] So, the distance between points \( P \) and \( Q \) is 5 units. To visualize this, imagine plotting both points on a Cartesian plane. You’ll see that \( P \) lies on the positive side of the x-axis, while \( Q \) is in the third quadrant. If you connect these two points with a straight line, it beautifully illustrates the distance as the hypotenuse of a right triangle formed by drawing vertical and horizontal lines from \( P \) to \( Q \)!
