Connor is constructing parallelogram ABCD . He has plotted A at \( (-2,4), \mathrm{B} \) at \( (0,3) \), and D at \( (-3,2) \). Which coordinate could be the location of point C \( \mathrm{OC}(0,0) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the coordinates of point C in parallelogram ABCD, we can use the property that the diagonals of a parallelogram bisect each other. This means that the midpoint of diagonal AC should be the same as the midpoint of diagonal BD. First, let's find the midpoint of points A and D: - A = (-2, 4) - D = (-3, 2) Midpoint of AD = \(\left(\frac{-2 + -3}{2}, \frac{4 + 2}{2}\right) = \left(\frac{-5}{2}, 3\right)\). Now, let's calculate the midpoint of points B and C, where B = (0, 3): - Midpoint of BC = \(\left(\frac{0 + x_C}{2}, \frac{3 + y_C}{2}\right)\). Setting the midpoints equal gives: - \(\frac{0 + x_C}{2} = \frac{-5}{2}\) and \(\frac{3 + y_C}{2} = 3\). From the first equation: \[x_C = -5.\] From the second equation: \[3 + y_C = 6 \Rightarrow y_C = 3.\] Thus, point C has coordinates (-5, 3).
