Pregunta
upstudy study bank question image url

\begin{tabular}{l} Below are the jersey numbers of 11 players randomly selected from a football team. Find the range, variance, and standard deviation for the given sample data. What do the results tell us \\ \( \begin{array}{lllllllll}71 & 35 & 59 & 68 & 26 & 44 & 66 & 63 & 4\end{array} 6 \) \\ \hline\end{tabular}

Ask by Mills Allan. in the United States
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The range is 67, the variance is approximately 647.07, and the standard deviation is about 25.45. This means the jersey numbers vary widely among the players.

Solución

**Step 1. List the Data** The sample data (jersey numbers) are assumed to be \[ 71,\; 35,\; 59,\; 68,\; 26,\; 44,\; 66,\; 63,\; 4,\; 6. \] There are \( n = 10 \) data values. **Step 2. Find the Range** The range is the difference between the maximum and minimum values. Here, - Maximum = \(71\) - Minimum = \(4\) Thus, the range is \[ \text{Range} = 71 - 4 = 67. \] **Step 3. Compute the Sample Mean** The sample mean \(\bar{x}\) is given by \[ \bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}. \] Calculating the sum: \[ 71 + 35 + 59 + 68 + 26 + 44 + 66 + 63 + 4 + 6 = 442. \] Thus, the mean is \[ \bar{x} = \frac{442}{10} = 44.2. \] **Step 4. Compute the Sample Variance** The sample variance \( s^2 \) is computed using \[ s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}. \] Calculate each squared deviation: 1. For \(71\): \(71 - 44.2 = 26.8\); \((26.8)^2 = 718.24\). 2. For \(35\): \(35 - 44.2 = -9.2\); \((-9.2)^2 = 84.64\). 3. For \(59\): \(59 - 44.2 = 14.8\); \((14.8)^2 = 219.04\). 4. For \(68\): \(68 - 44.2 = 23.8\); \((23.8)^2 = 566.44\). 5. For \(26\): \(26 - 44.2 = -18.2\); \((-18.2)^2 = 331.24\). 6. For \(44\): \(44 - 44.2 = -0.2\); \((-0.2)^2 = 0.04\). 7. For \(66\): \(66 - 44.2 = 21.8\); \((21.8)^2 = 475.24\). 8. For \(63\): \(63 - 44.2 = 18.8\); \((18.8)^2 = 353.44\). 9. For \(4\): \(4 - 44.2 = -40.2\); \((-40.2)^2 = 1616.04\). 10. For \(6\): \(6 - 44.2 = -38.2\); \((-38.2)^2 = 1459.24\). Sum all squared deviations: \[ 718.24 + 84.64 + 219.04 + 566.44 + 331.24 + 0.04 + 475.24 + 353.44 + 1616.04 + 1459.24 = 5823.6. \] Now, the sample variance is \[ s^2 = \frac{5823.6}{10 - 1} = \frac{5823.6}{9} \approx 647.07. \] **Step 5. Compute the Sample Standard Deviation** The standard deviation \( s \) is the square root of the variance: \[ s = \sqrt{647.07} \approx 25.45. \] **Interpretation of the Results** - **Range:** A range of \(67\) indicates that the jersey numbers span a wide interval, from \(4\) to \(71\). - **Variance and Standard Deviation:** The sample variance is approximately \(647.07\) and the standard deviation is about \(25.45\). This tells us that the jersey numbers deviate on average by roughly \(25\) from the mean \(44.2\). In practical terms, there is a considerable spread in the values among the players’ jersey numbers. These results highlight that the selected sample has a large dispersion around the mean.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the range, variance, and standard deviation of the given jersey numbers \(71, 35, 59, 68, 26, 44, 66, 63, 4, 6\), we will perform the following calculations: **Range:** The range is calculated as the difference between the maximum and minimum values in the dataset. Maximum = 71, Minimum = 4 Range = 71 - 4 = 67 **Variance:** 1. First, find the mean (average) of the numbers: Mean = \( \frac{(71 + 35 + 59 + 68 + 26 + 44 + 66 + 63 + 4 + 6)}{10} = \frac{442}{10} = 44.2 \) 2. Now, calculate the variance: Variance = \( \frac{\sum (x_i - \text{mean})^2}{n - 1} \) Where \(x_i\) is each value and \(n\) is the number of values. \[ \text{Variance} = \frac{(71 - 44.2)^2 + (35 - 44.2)^2 + (59 - 44.2)^2 + (68 - 44.2)^2 + (26 - 44.2)^2 + (44 - 44.2)^2 + (66 - 44.2)^2 + (63 - 44.2)^2 + (4 - 44.2)^2 + (6 - 44.2)^2}{10 - 1} \] \[ = \frac{(26.8)^2 + (-9.2)^2 + (14.8)^2 + (23.8)^2 + (-18.2)^2 + (-0.2)^2 + (21.8)^2 + (18.8)^2 + (-40.2)^2 + (-38.2)^2}{9} \] \[ = \frac{718.24 + 84.64 + 219.04 + 566.44 + 331.24 + 0.04 + 475.24 + 353.44 + 1616.04 + 1459.24}{9} = \frac{4394.6}{9} \approx 488.29 \] **Standard Deviation:** The standard deviation is the square root of the variance. Standard Deviation = \( \sqrt{488.29} \approx 22.08 \) **Interpretation of the Results:** The range of 67 indicates a wide dispersion of jersey numbers within the team, suggesting a significant difference in player selection. The variance of approximately 488.29 and a standard deviation of about 22.08 indicate that while most jersey numbers cluster around a certain mean, there are players with notably different numbers, reflecting diverse positions or roles on the team. This variances signifies that the team might have players with distinctly different gaming styles or positions!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad