2. \( 2 \sin ^{2} x=2+\cos x \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let's dive into the roots of this equation! This trigonometric equation \( 2 \sin^{2} x = 2 + \cos x \) can be transformed using the Pythagorean identity \( \sin^{2} x = 1 - \cos^{2} x \). Substituting gives us \( 2(1 - \cos^{2} x) = 2 + \cos x \), which can be rearranged to form a quadratic in terms of \( \cos x \). This reveals how much trigonometric identities can simplify complex expressions! Now, when you solve the equation after simplifying it, you often encounter common mistakes like forgetting to verify your solutions within the original trigonometric context. Always check that your final answers satisfy the original equation, especially when dealing with multiple angles or quadrants! Happy solving!