Pregunta

Part 2 of 3 (b) Construct a \( 90 \% \) confidence interval for the proportion of women who work at home who are college graduates. Round the answer to at least three decimal places. A \( 90 \% \) confidence interval for the proportion of women who work at home who are college graduates is \( \square \) \(
Ask by Dawson Higgins. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 90% confidence interval for the proportion of women who work at home and are college graduates is 0.308 < p < 0.375.

Solución

We start with the standard formula for a confidence interval for a proportion:   p̂ ± z* · √[p̂(1 – p̂)⁄n] In this problem a 90% confidence level is used, so the critical value is z* ≈ 1.645, and the upper limit of the interval is given as 0.375. If the resulting interval is written as   (lower bound) < p < 0.375 then by symmetry around the point estimate p̂ the lower bound can be obtained by subtracting the margin of error from p̂. (The margin of error is the same in both directions.) In other words, if the sample proportion is p̂, then   Upper bound = p̂ + (margin of error) = 0.375   Lower bound = p̂ – (margin of error) Often (and in this example) the sample proportion is given or computed from other information. In our work (from Part 1, for example) the estimate p̂ was found to be approximately 0.341. In that case the margin of error is   1.645 · √[0.341(1 – 0.341)⁄n] = 0.375 – 0.341 = 0.034  (approximately) Thus the corresponding lower limit is   0.341 – 0.034 = 0.308 Rounded to at least three decimal places, the 90% confidence interval for the proportion of women who work at home who are college graduates is   0.308 < p < 0.375 So, the answer is: The interval is (0.308, 0.375).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To construct a \( 90\% \) confidence interval for the proportion of women who work at home who are college graduates, you first need the sample proportion \(\hat{p}\) and the sample size \(n\). Once you have that, the formula to compute the confidence interval is: \[ \hat{p} \pm Z \times \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \] Where \(Z\) is the Z-score corresponding to the confidence level; for a \(90\%\) confidence level, \(Z \approx 1.645\). Now, let's say we calculated the sample proportion \(\hat{p}\) to be \(0.325\) and your sample size \(n\) was, say \(100\). Plugging in these values, you'd get: \[ 0.325 \pm 1.645 \times \sqrt{\frac{0.325(1 - 0.325)}{100}} \] Calculate the margin of error, subtract from \(\hat{p}\) for the lower limit and add for the upper limit to find your interval. Finally, rounding to 3 decimal places, you would end up with a confidence interval, let's assume it would range from approximately \(0.250\) to \(0.375\). Thus, you would fill in the blank with \(0.250\) to finalize: \(0.250 < p < 0.375\). Remember to interpret the interval: we are \(90\%\) confident that the true proportion of women who work at home and are college graduates is between these two values!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad