Pregunta
A rectangular prism has a base of 18 cm by 15 cm and a
diagonal of 25 cm . Identify its height. Round to the nearest
tenth.
34.2 cm
8.7 cm
34.3 cm
2.8 cm
diagonal of 25 cm . Identify its height. Round to the nearest
tenth.
34.2 cm
8.7 cm
34.3 cm
2.8 cm
Ask by Campbell Wilson. in the United States
Mar 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The height of the prism is 8.7 cm.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To find the height of the rectangular prism, we can use the Pythagorean theorem in three dimensions. The diagonal of the prism can be represented as the square root of the sum of the squares of the three dimensions: width, length, and height (d = √(l² + w² + h²)). Here, the base measures 18 cm (length) and 15 cm (width), and the diagonal is given as 25 cm. Plugging in the values:
25 = √(18² + 15² + h²)
25 = √(324 + 225 + h²)
25 = √(549 + h²)
625 = 549 + h²
h² = 625 - 549
h² = 76
h = √76
h ≈ 8.7 cm
25 = √(324 + 225 + h²)
25 = √(549 + h²)
625 = 549 + h²
h² = 625 - 549
h² = 76
h = √76
h ≈ 8.7 cm
So the height is approximately 8.7 cm.
Lastly, rounding to the nearest tenth confirms that the new height is correct!
Rounding strategies are essential. If you’re ever unsure how to round, remember: if the digit to the right of your last significant digit is 5 or greater, you round up, and if it’s less than 5, you round down. For our height (8.7) this was simple since it sat at a clean digit already!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium