Pregunta
upstudy study bank question image url

Construct a circle of radius 5 cm . Then construct a pair of tangents to the circle such that the angle between them is \( 60^{\circ} \).

Ask by Brooks Floyd. in India
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To construct a circle with a radius of 5 cm and a pair of tangents that form a \( 60^{\circ} \) angle, follow these steps: 1. **Draw the Circle**: Create a circle with a 5 cm radius. 2. **Draw a Radius**: From the center, draw a line to a point on the circumference. 3. **Construct the Angle**: At the center, create a \( 60^{\circ} \) angle from the radius. 4. **Draw Tangents**: From the points where the angle lines meet the circle, draw lines tangent to the circle. 5. **Verify the Angle**: Ensure the angle between the two tangents is \( 60^{\circ} \). This setup will give you the desired circle and tangents with the specified angle.

Solución

To construct a pair of tangents to a circle such that the angle between them is \( 60^{\circ} \), follow these steps: ### Step 1: Draw the Circle 1. **Draw a circle** with a radius of 5 cm. Label the center of the circle as point \( O \). ### Step 2: Draw the Radius 2. **Draw a radius** \( OA \) of the circle, where \( A \) is a point on the circumference of the circle. ### Step 3: Construct the Angle 3. **Construct an angle of \( 60^{\circ} \)** at point \( O \): - Use a protractor to measure \( 60^{\circ} \) from the radius \( OA \) and mark point \( B \) on the circle. ### Step 4: Draw the Tangents 4. **Draw the tangents**: - From point \( A \), draw a line that is tangent to the circle. This line will touch the circle at point \( A \) and will be perpendicular to the radius \( OA \). - From point \( B \), draw another line that is tangent to the circle. This line will touch the circle at point \( B \) and will be perpendicular to the radius \( OB \). ### Step 5: Verify the Angle 5. **Verify the angle between the tangents**: - The angle between the two tangents \( AT \) and \( BT \) (where \( T \) is the point of tangency) should be \( 60^{\circ} \). ### Conclusion You have now constructed a circle of radius 5 cm and a pair of tangents to the circle such that the angle between them is \( 60^{\circ} \). If you need a visual representation or further assistance, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To create tangents that are \( 60^{\circ} \) apart from a circle of radius 5 cm, start by drawing the circle centered at point O. From the center O, draw a radius OA. Since you want the angle between the two tangents to be \( 60^{\circ} \), construct an isosceles triangle OAB, where the lengths OA and OB equal the radius (5 cm), and the angle AOB measures \( 60^{\circ} \). Calculate the distance from the center to the point where the two tangents touch the circle (tangent point P) by using the formula: length of tangents = \( \sqrt{OA^2 - OP^2} = \sqrt{25 - OP^2} \). The longer side ensures the tangents at points T1 and T2 form the desired angle. For an easier visual, you can use a protractor to measure \( 30^{\circ} \) from each radius (since each tangent forms a right angle with the radius at the point of tangency) to mark points T1 and T2 outside the circle. Once you have the points T1 and T2 determined, simply draw straight lines from those points to T1 and T2 to form your tangents. You'll see the beautiful symmetry and elegance come together with that perfect \( 60^{\circ} \) angle!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad