Pregunta
upstudy study bank question image url

You deposit \( \$ 3000 \) in an account earning \( 2 \% \) interest compounded monthly. How much will you have in the account in 10 years? Round value to the nearest cent. Question Help: Video

Ask by Gross Schultz. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 10 years, you will have approximately \$3,664.21 in the account.

Solución

The formula for compound interest is:   A = P(1 + r/n)^(nt) Here, P = 3000, r = 0.02 (annual rate), n = 12 (monthly compounding), and t = 10 years. Step 1: Find the periodic rate:   r/n = 0.02/12 ≈ 0.00166667 Step 2: Determine the number of compounding periods:   nt = 12 × 10 = 120 Step 3: Substitute into the formula:   A = 3000(1 + 0.00166667)^120   A = 3000(1.00166667)^120 Step 4: Calculate (1.00166667)^120:   (1.00166667)^120 ≈ 1.22140 Step 5: Multiply by the principal:   A ≈ 3000 × 1.22140 = 3664.21 So, you will have approximately $3,664.21 in the account after 10 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much you'll have in the account after 10 years with \( \$ 3000 \) deposited at \( 2\% \) interest compounded monthly, you can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount in the account after time \( t \). - \( P \) is the principal amount (\$3000). - \( r \) is the annual interest rate (0.02). - \( n \) is the number of times interest is compounded per year (12). - \( t \) is the number of years the money is invested or borrowed (10). Plugging in the values: \[ A = 3000 \left(1 + \frac{0.02}{12}\right)^{12 \times 10} = 3000 \left(1 + \frac{0.02}{12}\right)^{120} \] Calculating this step-by-step, you would find that after 10 years, your account will have approximately \( \$ 3,677.64 \). It's like watching your money grow like a little plant: with each compounding month, it gets a little taller! Happy saving! For fun, you might also explore how interest rates impact your savings as you consider future investments. A small change can lead to a big difference over time! Check out savings calculators online to play with different deposit amounts and interest rates and see how your financial garden can flourish!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad