Responder
Minimum value of \( C = 3 \), \( x_{1} = 3 \), \( x_{2} = 3 \).
Solución
To solve the given linear programming problem using the simplex method, we first need to convert the problem into a standard form suitable for the simplex algorithm.
### Step 1: Convert the inequalities to equalities
The constraints given are:
1. \( x_{1} + x_{2} \geq 6 \)
2. \( 2x_{1} + 4x_{2} \geq 12 \)
We can convert these inequalities into equalities by introducing slack variables. However, since these are "greater than or equal to" constraints, we will introduce surplus variables instead.
1. For the first constraint, we introduce a surplus variable \( s_1 \):
\[
x_{1} + x_{2} - s_1 = 6
\]
2. For the second constraint, we introduce a surplus variable \( s_2 \):
\[
2x_{1} + 4x_{2} - s_2 = 12
\]
### Step 2: Set up the objective function
The objective function to minimize is:
\[
C = x_{1} + 2x_{2}
\]
### Step 3: Formulate the tableau
We will rewrite the objective function in terms of the surplus variables:
\[
C + 0s_1 + 0s_2 = 0
\]
Now we can set up the initial simplex tableau:
\[
\begin{array}{c|cccccc|c}
\text{Basic Variables} & x_{1} & x_{2} & s_1 & s_2 & C & \text{RHS} \\
\hline
s_1 & 1 & 1 & 1 & 0 & 0 & 6 \\
s_2 & 2 & 4 & 0 & 1 & 0 & 12 \\
\hline
-C & -1 & -2 & 0 & 0 & 1 & 0 \\
\end{array}
\]
### Step 4: Perform the simplex method
1. Identify the pivot column (most negative in the last row): here, it is \( x_{2} \) (column 2).
2. Calculate the ratios for the pivot row:
- For \( s_1 \): \( \frac{6}{1} = 6 \)
- For \( s_2 \): \( \frac{12}{4} = 3 \)
The smallest ratio is 3, so we pivot on \( x_{2} \) in the second row.
### Step 5: Pivoting
We will perform row operations to make the pivot column a unit column.
1. Divide the second row by 4:
\[
\text{New } s_2: \quad \left( \frac{1}{2}, 1, 0, \frac{1}{4}, 0, 3 \right)
\]
2. Update the first row:
\[
\text{New } s_1: \quad \left( 1 - 0, 1 - 0, 1 - 0, 0 - 0, 0 - 0, 6 - 0 \right) = (1, 0, 1, -\frac{1}{4}, 0, 6)
\]
3. Update the last row:
\[
\text{New } -C: \quad \left( -1 + 2 \cdot \frac{1}{2}, -2 + 2 \cdot 1, 0, 0 + 0, 1, 0 + 3 \right) = (0, 0, 0, \frac{1}{2}, 1, 3)
\]
The new tableau is:
\[
\begin{array}{c|cccccc|c}
\text{Basic Variables} & x_{1} & x_{2} & s_1 & s_2 & C & \text{RHS} \\
\hline
s_1 & 1 & 0 & 1 & -\frac{1}{4} & 0 & 6 \\
x_{2} & \frac{1}{2} & 1 & 0 & \frac{1}{4} & 0 & 3 \\
\hline
-C & 0 & 0 & 0 & \frac{1}{2} & 1 & 3 \\
\end{array}
\]
### Step 6: Final tableau
The final tableau indicates that the optimal solution has been reached since there are no negative coefficients in the last row.
### Step 7: Read the solution
From the final tableau:
- The minimum value of \( C \) is \( 3 \).
- The values of the variables are:
- \( x_{1} = 3 \)
- \( x_{2} = 3 \)
### Conclusion
The final answers are:
- Minimum value of \( C = 3 \)
- Value of \( x_{1} = 3 \)
- Value of \( x_{2} = 3 \)
Please note that the provided values in the question were incorrect. The correct minimum value of \( C \) is \( 3 \), not \( 6 \).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución