10. Given that P and Q are two points which lie on the parallel of latitudo of \( 60^{\circ} \mathrm{N} \). The longitudes of P and Q are \( 30^{\circ} \mathrm{E} \) and \( 150^{\circ} \mathrm{W} \) respectively. Calculate their shortest distance measured along the surface of the earth.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the shortest distance between points P (30°E) and Q (150°W) on the latitude of 60°N, we first need to convert the longitudes into a common format. The longitude of Q can be converted as follows: \( 150^{\circ} \text{W} \) is equivalent to \( -150^{\circ} \). Now we calculate the difference in longitudes: \[ \Delta \text{Longitude} = 30^{\circ} - (-150^{\circ}) = 30^{\circ} + 150^{\circ} = 180^{\circ} \] Since they both lie on the same parallel (60°N), we can use the cosine of the latitude to find the actual distance on the surface of the earth: \[ \text{Distance} = \Delta \text{Longitude} \times \frac{\pi}{180} \times R \times \cos(\text{Latitude}) \] Here, \( R \) (the radius of the Earth) is approximately \( 6371 \text{ km} \): \[ \text{Distance} = 180^{\circ} \times \frac{\pi}{180} \times 6371 \times \cos(60^{\circ}) \] Since \( \cos(60^{\circ}) = 0.5 \): \[ \text{Distance} = 6371 \times 0.5 = 3185.5 \text{ km} \] Thus, the shortest distance between points P and Q measured along the surface of the Earth is approximately \( 3185.5 \) kilometers.
