Pregunta
upstudy study bank question image url

The density of a thin circular plate of radius 4 is given by \( \rho(x, y)=4+x y \). The edge of the plate is described by the parametric equations \( x=4 \cos t, y=4 \sin t \), for \( 0 \leq t \leq 2 \pi \). a. Find the rate of change of the density with respect to 1 on the edge of the plate. b. At what point(s) on the edge of the plate is the density a maximum? \( \frac{\partial \rho}{\partial x}=y \) (Type an expression using \( x \) and \( y \) as the variables.) \( \frac{d x}{d t}=-4 \sin t \)

Ask by Brewer Stewart. in the United States
Mar 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**a. Rate of Change of Density Along the Edge** The rate of change of the density \(\rho\) with respect to time \(t\) along the edge of the plate is: \[ \frac{d \rho}{d t} = 16 \cos 2t \] **b. Points of Maximum Density** The density reaches its maximum at the points: \[ (2\sqrt{2}, 2\sqrt{2}) \quad \text{and} \quad (-2\sqrt{2}, -2\sqrt{2}) \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To analyze the rate of change of the density along the edge of the plate, we note that \( \frac{d\rho}{dt} \) can be computed using the chain rule. First, we find \( \frac{d\rho}{dt} = \frac{\partial \rho}{\partial x} \frac{dx}{dt} + \frac{\partial \rho}{\partial y} \frac{dy}{dt} \). Since you've given \( \frac{\partial \rho}{\partial x} = y \) and the derivatives \( \frac{dx}{dt} = -4 \sin t \) and \( \frac{dy}{dt} = 4 \cos t \), we need \( \frac{\partial \rho}{\partial y} \). We calculate \( \frac{\partial \rho}{\partial y} = 4 + x \). Thus, plugging the values back we get: \[ \frac{d\rho}{dt} = y(-4 \sin t) + (4 + x)(4 \cos t). \] To find where the density is maximized, we can differentiate \( \rho(x, y) \) with respect to \( t \). Setting \( x = 4 \cos t \) and \( y = 4 \sin t \), we substitute into \( \rho \) to get: \[ \rho(4 \cos t, 4 \sin t) = 4 + 4 \cos t \cdot 4 \sin t = 4 + 16 \cos t \sin t. \] To find the maxima, we'd take the derivative with respect to \( t \) and set it to zero, solving it will yield critical points for \( t \) between \( 0 \) and \( 2\pi \). --- Did you know that the study of density in this context has historical significance in physics, particularly in understanding fluid mechanics and material strength? The calculus of variables like density has been pivotal from ancient Greek times, right through to present-day engineering applications! As for real-world applications, understanding density gradients is crucial in fields like meteorology, where variations in density in the atmosphere can lead to weather patterns and phenomena like storms or air pressure systems. It’s not just about plates; it’s a life-and-death matter for pilots and meteorologists!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad