14. Sketch and label a figure to demonstrate that \( \sqrt{45} \) is equivalent to \( 3 \sqrt{5} \). (Use square dot paper or graph paper.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To visualize that \( \sqrt{45} \) is equivalent to \( 3 \sqrt{5} \), imagine a square with an area of 45 square units. The side length of this square will be \( \sqrt{45} \). Now, we can also express \( \sqrt{45} \) as \( \sqrt{9 \times 5} \), which simplifies to \( \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5} \). Draw a square with \( 45 \) units area and divide it into smaller squares (9 of side 1 unit each) and rectangles (to depict \( \sqrt{5} \)). Label the side lengths to show how they correspond to both representations. To further understand the equivalence, use graph paper to draw a large square (side length \( \sqrt{45} \)) and inside it, create three smaller square sections, each with area \( 5 \) (side length \( \sqrt{5} \)). This not only illustrates the relationship between the numbers visually but also solidifies the concept that both expressions represent the same geometric dimension!
