Pregunta
upstudy study bank question image url

  1. Draw a rough diagram for the quadratic polynomial when .
  2. Find the value of k for the quadratic equatioin . So that it has two equal
    roots.

Ask by Huff Chambers. in India
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

14. Rough Diagram for when :
The parabola opens upward with its vertex at the lowest point.
15. Value of for the equation to have two equal roots:
Set the discriminant to zero: . Solving this gives .
Answer:
The parabola opens upward with its vertex at the lowest point. The value of is 6.

Solución

14. Rough Diagram for when :
Since , the parabola opens upward. A rough sketch of the graph might look like:
          |
        V |       •
          |      • •
          |     •   •
          |----•-----•----> x
          |   •       •
          |  •         •
          | •           •
          |•             •
          |
Here, the point labeled represents the vertex of the parabola, and the vertical line passing through it is the axis of symmetry.

15. Finding the value of for which the quadratic equation has two equal roots:
  1. Write the equation in standard quadratic form:
    Expand the given equation:
    Here, the quadratic is of the form with:
  2. Set the discriminant equal to zero for equal roots:
    For a quadratic equation to have equal (repeated) roots, the discriminant must be zero:
    Substitute the values of , , and :
    Simplify:
  3. Solve for :
    Factor the equation:
    Therefore, the solutions are:
  4. Exclude any non-quadratic case:
    If , the equation becomes a constant equation , which is invalid. Hence, the only valid solution for the quadratic is:

Answer:
For the upward opening parabola, the rough diagram is as shown above.
The value of that makes the quadratic have two equal roots is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When you graph the quadratic polynomial with , you’ll create a beautiful U-shaped curve called a parabola that opens upwards. The vertex is the lowest point on the graph, and it can be found using the formula . The axis of symmetry passes through this vertex and splits the parabola into two mirror-image halves.
To find the value of that makes the quadratic equation have two equal roots, you need to ensure that the discriminant is zero. First, rewrite it as . The discriminant is given by . Here, . To have equal roots, set this equal to zero: leading to . Hence, or !

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad