Pregunta
upstudy study bank question image url

A company claims that its packages of beads contain, on average, 50 beads with a standard deviation of 5.4 beads. In a hypothesis test of this claim, \( H_{0} \) is \( \mu=50 \) and \( H_{a} \) is \( \mu \neq 50 \), where \( \mu \) is the average number of beads per package. Based on a sample of 20 packages, Celia calculates a mean of 52.5 beads per package. Formula for z-statistic: \[ z=\frac{\bar{x}-\mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \] What is the z-statistic for the sample? Round the answer to the nearest hundredth. \[ z=2.07 \] COMPLETE The critical value for \( z^{\star} \) for a hypothesis test of the claim at \( 5 \% \) significance is \( z^{\star}=1.96 \). How should the \( z \)-statistic for the sample be interpreted in terms of the hypothesis test? The null hypothesis should be rejected. The null hypothesis should be accepted. There is not enough evidence to reject the null hypothesis.

Ask by Grant Barker. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The z-statistic is 2.07. Since 2.07 is greater than 1.96, we reject the null hypothesis.

Solución

The z-statistic is calculated as follows:   z = (52.5 – 50) / (5.4/√20)     = 2.5 / (5.4/4.472)     = 2.5 / 1.207 ≈ 2.07 Since the calculated z-value of 2.07 is greater than the critical value of 1.96 (for a 5% significance level in a two-tailed test), we reject the null hypothesis.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

When the z-statistic is calculated as \( z = 2.07 \), it indicates that the observed sample mean of 52.5 beads is 2.07 standard deviations away from the hypothesized population mean of 50 beads. Since this calculated z-statistic exceeds the critical value of \( z^{\star} = 1.96 \) for a two-tailed test at a 5% significance level, it provides strong evidence against the null hypothesis. In practical terms, a z-statistic above the critical threshold means that there is a significant difference between the observed and hypothesized means, suggesting that the company’s claim may not hold. Thus, it leads to the conclusion that the null hypothesis should be rejected, indicating that there is statistically significant evidence to suggest the average number of beads per package is indeed different from the company's claim.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad