Pregunta
Let
and
be
matrices, with
and det
. Use properties of determinants to complete parts (a) through (e) below.
a. Compute det
.
det
(Type an integer or a fraction.)
b. Compute det
.
det
(Type an integer or a fraction.)
c. Compute det
.
det
(Type an integer or a fraction.)
d. Compute det
.
det
(Type an integer or a simplified fraction.)
e. Compute det
,
det
(Type an integer or a fraction.)
a. Compute det
det
b. Compute det
det
c. Compute det
det
d. Compute det
det
e. Compute det
det
Ask by Boyd Stewart. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
det
det
det
det
det
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
The properties of determinants are quite fascinating and can really illuminate the beauty of linear algebra! When you multiply matrices
and
, the determinant of the product is the product of their determinants. So, for part (a), we find that
.
Now, let’s talk about scaling matrices! When you multiply a matrix by a scalar, the determinant is scaled by the scalar raised to the power of the size of the matrix. In this case, since
is
and is multiplied by
, we calculate
.
For part ©, remember that the determinant of the transpose of a matrix is the same as the determinant of the original matrix, hence
.
Moving on to the inverse! The determinant of an inverse matrix is the reciprocal of the determinant of the original matrix. So for part (d), we find
.
Lastly, when calculating the determinant of a matrix raised to a power
, you take the determinant of the matrix and raise it to the power
. Thus, for part (e),
.
Here are the results:
a.
b.
c.
d.
e.
a.
b.
c.
d.
e.
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium