Pregunta
upstudy study bank question image url

3. A street with two lanes, each 12 ft wide, goes through a semicircular tunnel with radius 15 ft . How high is the tunnel at the edge of each lane? 4. A window is to be constructed as shown, with its upper boundary the arc of a circle having radius 4 ft and center at the midpoint of base AD. If the vertical side is to be \( 3 / 4 \) as long as the base, find the dimensions (vertical side and base) of this window.

Ask by Delgado Olson. in the Philippines
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The window has a base of approximately 4.43 feet and vertical sides of approximately 3.33 feet.

Solución

To determine the dimensions of the window, we'll analyze the given information step by step. ### Problem 4 Recap: - **Upper Boundary:** Arc of a circle with radius \( 4 \) ft. - **Center of Circle:** Midpoint of base \( AD \). - **Vertical Side:** \( \frac{3}{4} \) as long as the base. ### Step-by-Step Solution: 1. **Define Variables:** - Let \( b \) = length of the base \( AD \). - Let \( v \) = length of the vertical sides. Given that \( v = \frac{3}{4}b \). 2. **Coordinate System Setup:** - Place the midpoint of \( AD \) at the origin \( O(0, 0) \). - Thus, points \( A \) and \( D \) are at \( \left( -\frac{b}{2}, 0 \right) \) and \( \left( \frac{b}{2}, 0 \right) \), respectively. - The circle has the equation \( x^2 + y^2 = 16 \) (since radius \( r = 4 \) ft). 3. **Finding the Height \( v \):** - The vertical sides extend from \( A \) and \( D \) upwards to the circle. - At \( A \) (\( x = -\frac{b}{2} \)), the intersection with the circle occurs at: \[ y = \sqrt{16 - \left( \frac{b}{2} \right)^2} \] - Therefore, \( v = \sqrt{16 - \frac{b^2}{4}} \). 4. **Establishing the Relationship:** - Given \( v = \frac{3}{4}b \), set up the equation: \[ \frac{3}{4}b = \sqrt{16 - \frac{b^2}{4}} \] 5. **Solving for \( b \):** - Square both sides to eliminate the square root: \[ \left( \frac{3}{4}b \right)^2 = 16 - \frac{b^2}{4} \] \[ \frac{9}{16}b^2 = 16 - \frac{b^2}{4} \] - Multiply all terms by \( 16 \) to eliminate denominators: \[ 9b^2 = 256 - 4b^2 \] - Combine like terms: \[ 13b^2 = 256 \] \[ b^2 = \frac{256}{13} \] \[ b = \frac{16\sqrt{13}}{13} \text{ ft} \] 6. **Calculating \( v \):** - Using \( v = \frac{3}{4}b \): \[ v = \frac{3}{4} \times \frac{16\sqrt{13}}{13} = \frac{12\sqrt{13}}{13} \text{ ft} \] ### Final Dimensions: - **Base (\( AD \)):** \( \frac{16\sqrt{13}}{13} \) feet (approximately **4.43 ft**). - **Vertical Sides:** \( \frac{12\sqrt{13}}{13} \) feet (approximately **3.33 ft**). ### Summary: - **Base:** \( \boxed{\dfrac{16\,\sqrt{13}}{13}\ \text{feet}} \) - **Vertical Sides:** \( \boxed{\dfrac{12\,\sqrt{13}}{13}\ \text{feet}} \) Alternatively, in decimal form: - **Base:** Approximately **4.43 ft** - **Vertical Sides:** Approximately **3.33 ft**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the height of the tunnel at the edge of each lane, we need to visualize the semicircular tunnel. The tunnel has a radius of 15 ft, and since each lane is 12 ft wide, the distance from the center of the tunnel to the edge of the lane is 6 ft (half of 12 ft). By applying the Pythagorean theorem, we can find the height (y) at the edge: \( y = \sqrt{15^2 - 6^2} = \sqrt{225 - 36} = \sqrt{189} \approx 13.75 \) ft. So, the tunnel shines brightly at approximately 13.75 ft at the edge of each lane! For the window, let’s break it down. The base AD is denoted as 'b', and since the vertical side needs to be \( \frac{3}{4}b \), we can express it as \( h = \frac{3}{4}b \). Since the upper boundary follows a circle with radius 4 ft, we can relate this to their positions: the arc must meet the top of the vertical side. Utilizing the circle equation \( x^2 + y^2 = 16 \) and substituting in our values leads you to figure out the dimensions. Ultimately, if the base b is 4 ft, the vertical side will be 3 ft, giving you a perfect fit for your stylish window!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad