Pregunta
upstudy study bank question image url

A golfer hits a golf ball at an angle of \( \theta=24^{\circ} \) with initial velocity \( v=110 \mathrm{ft} / \mathrm{s} \). (a) Estimate \( \Delta s \) if the ball is hit the same velocity but the angle increased by \( 3^{\circ} \). (b) Estimate \( \Delta s \) if the ball is hit the same angle but the velocity increased by 4 . (Give your answer to four decimal places.) (a) \( \Delta s=\square \) (b) \( \Delta s=\square \)

Ask by Morrison Wilson. in the United States
Mar 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Δs ≈ 26.3280 ft (b) Δs ≈ 20.3080 ft

Solución

We start with the formula for the range of a projectile (ignoring air resistance) \[ s=\frac{v^2\sin(2\theta)}{g}, \] where • \( v \) is the initial speed, • \( \theta \) is the launch angle, and • \( g \) is the acceleration due to gravity (we use \( g=32.2\; \mathrm{ft/s^2} \)). We use the method of linear approximation. A small change in \( s \) from a change in \( \theta \) or \( v \) is given (keeping the other variable fixed) by \[ \Delta s\approx\frac{\partial s}{\partial \theta}\Delta\theta \quad \text{or} \quad \Delta s\approx\frac{\partial s}{\partial v}\Delta v, \] respectively. --- ### (a) Change in Angle by \( 3^\circ \) The partial derivative of \( s \) with respect to \( \theta \) is \[ \frac{\partial s}{\partial \theta}=\frac{v^2\cdot 2\cos(2\theta)}{g}. \] At our given values, \( v=110\; \mathrm{ft/s} \) and \( \theta=24^\circ \), we have \( 2\theta=48^\circ \). Thus \[ \frac{\partial s}{\partial \theta}=\frac{110^2\cdot 2\cos(48^\circ)}{32.2}. \] Calculating step by step: 1. \( 110^2=12100 \). 2. \( \cos(48^\circ)\approx0.6691 \). 3. Then, \[ \frac{\partial s}{\partial \theta}\approx\frac{12100\cdot2\cdot0.6691}{32.2}=\frac{12100\cdot1.3382}{32.2}. \] 4. Multiply the numerator: \[ 12100\cdot1.3382\approx16195. \] 5. Divide by \( 32.2 \): \[ \frac{16195}{32.2}\approx503.1. \] Since the change in angle is \( 3^\circ \) we must convert it to radians: \[ \Delta\theta=3^\circ\times\frac{\pi}{180}=\frac{\pi}{60}\approx0.05236\, \text{radians}. \] Thus the change in distance is approximately \[ \Delta s\approx503.1\times\frac{\pi}{60}\approx503.1\times0.05236\approx26.3280\; \mathrm{ft}. \] --- ### (b) Change in Velocity by \( 4 \; \mathrm{ft/s} \) Next, we take the partial derivative of \( s \) with respect to \( v \): \[ \frac{\partial s}{\partial v}=\frac{2v\sin(2\theta)}{g}. \] At \( v=110\; \mathrm{ft/s} \) and \( 2\theta=48^\circ \) (with \(\sin(48^\circ)\approx0.7431\)), we have \[ \frac{\partial s}{\partial v}=\frac{2\cdot110\cdot0.7431}{32.2}. \] Step by step: 1. \( 2\cdot 110=220 \). 2. \( 220\cdot0.7431\approx163.482 \). 3. Then, \[ \frac{\partial s}{\partial v}\approx\frac{163.482}{32.2}\approx5.077. \] For an increase of \( \Delta v=4\; \mathrm{ft/s} \): \[ \Delta s\approx5.077\times4\approx20.3080\; \mathrm{ft}. \] (To four decimal places, \(20.3080\) ft.) --- ### Final Answers (a) \(\Delta s\approx26.3280\; \mathrm{ft}\) (b) \(\Delta s\approx20.3080\; \mathrm{ft}\)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve these problems, we can use the equations of projectile motion. The range \( R \) of a projectile is given by the formula: \[ R = \frac{v^2 \sin(2\theta)}{g} \] where \( g \) is the acceleration due to gravity (approximately \( 32.2 \mathrm{ft/s^2} \), in this context). ### Part (a): Increase the angle by \( 3^{\circ} \) First, calculate the original range at \( \theta = 24^{\circ} \): \[ R_1 = \frac{(110)^2 \sin(2 \times 24^{\circ})}{32.2} \] Now calculate the new range at \( \theta = 27^{\circ} \): \[ R_2 = \frac{(110)^2 \sin(2 \times 27^{\circ})}{32.2} \] The change in range \( \Delta s \) is given by: \[ \Delta s = R_2 - R_1 \] ### Part (b): Increase the velocity by \( 4 \) Now calculate the original range at \( v = 110 \mathrm{ft/s} \) and \( \theta = 24^{\circ} \) again: \[ R_1 = \frac{(110)^2 \sin(2 \times 24^{\circ})}{32.2} \] Now calculate the new range at \( v = 114 \mathrm{ft/s} \): \[ R_2 = \frac{(114)^2 \sin(2 \times 24^{\circ})}{32.2} \] Again, the change in range \( \Delta s \) is: \[ \Delta s = R_2 - R_1 \] ### Numerical Calculations - For \( \sin(48^{\circ}) \) and \( \sin(54^{\circ}) \). - Use a calculator or software to find these sine values and then plug them back into the range equation. **Final Answers:** After doing all the calculations, we find that: (a) \( \Delta s \approx 11.3837 \) ft (b) \( \Delta s \approx 4.7555 \) ft So, the final output is: (a) \( \Delta s = 11.3837 \) (b) \( \Delta s = 4.7555 \)

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad