Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 50,000 \) from your account each year for 25 years after you retire. You expect to retire in 20 years. If your account earns \( 7 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals? Round your answer to the nearest cent.

Ask by Delgado Jimenez. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$582,679.16 each year until retirement to achieve your retirement goals.

Solución

To determine how much you need to deposit each year until retirement to achieve your retirement goals, we can use the formula for calculating the present value of an annuity: \[ PV = \frac{PMT \times (1 - (1 + r)^{-n})}{r} \] Where: - \( PV \) is the present value (the amount you need to deposit each year until retirement), - \( PMT \) is the annual withdrawal amount (\( \$50,000 \)), - \( r \) is the annual interest rate (\( 7\% \)), - \( n \) is the number of years until retirement (20 years). Given that you want to withdraw \( \$50,000 \) each year for 25 years after retirement, we can calculate the present value of the annuity using the formula above. Let's calculate the present value of the annuity. Calculate the value by following steps: - step0: Calculate: \(\frac{50000\left(1-\left(1+0.07\right)^{-25}\right)}{0.07}\) - step1: Add the numbers: \(\frac{50000\left(1-1.07^{-25}\right)}{0.07}\) - step2: Convert the expressions: \(\frac{50000\left(1-\left(\frac{107}{100}\right)^{-25}\right)}{0.07}\) - step3: Subtract the numbers: \(\frac{50000\times \frac{107^{25}-100^{25}}{107^{25}}}{0.07}\) - step4: Multiply the numbers: \(\frac{\frac{50000\times 107^{25}-50000\times 100^{25}}{107^{25}}}{0.07}\) - step5: Convert the expressions: \(\frac{\frac{50000\times 107^{25}-50000\times 100^{25}}{107^{25}}}{\frac{7}{100}}\) - step6: Multiply by the reciprocal: \(\frac{50000\times 107^{25}-50000\times 100^{25}}{107^{25}}\times \frac{100}{7}\) - step7: Multiply the fractions: \(\frac{\left(50000\times 107^{25}-50000\times 100^{25}\right)\times 100}{107^{25}\times 7}\) - step8: Multiply: \(\frac{5000000\times 107^{25}-5000000\times 100^{25}}{107^{25}\times 7}\) The present value of the annuity is approximately \( \$582,679.16 \). Therefore, you need to deposit approximately \( \$582,679.16 \) each year until retirement to achieve your retirement goals.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine how much you need to deposit each year for 20 years to withdraw $50,000 annually for 25 years at an interest rate of 7%, we first need to find the total amount required at retirement. Using the formula for the present value of annuities, we calculate: \[ PV = PMT \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] Where: - PMT = $50,000 (annual withdrawal) - r = 0.07 (interest rate) - n = 25 (duration in years) Calculating this gives us: \[ PV = 50,000 \times \left( \frac{1 - (1 + 0.07)^{-25}}{0.07} \right) \approx 50,000 \times 9.1071 \approx 455,355.73 \] This means you need approximately $455,355.73 when you retire. Now, we'll find out how much to deposit annually for 20 years to reach this amount, using the future value of annuities formula: \[ FV = PMT \times \left( \frac{(1 + r)^n - 1}{r} \right) \] Rearranging gives: \[ PMT = \frac{FV}{\left( \frac{(1 + r)^n - 1}{r} \right)} \] Substituting in our values: - FV = 455,355.73 - r = 0.07 - n = 20 Calculating gives us: \[ PMT = \frac{455,355.73}{\left( \frac{(1 + 0.07)^{20} - 1}{0.07} \right)} \approx \frac{455,355.73}{52.202} \approx 8,703.77 \] Thus, you need to deposit approximately **$8,703.77** each year for 20 years to achieve your retirement goals.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad