Pregunta
upstudy study bank question image url

eet h be the vertical height of the garden and let A be the total area of the garden and borders. Write the objective function \( \mathrm{A}=\left(\frac{190}{\mathrm{~h}}+4\right)(\mathrm{h}+2) \) (Type an expression.) The interval of interest of the objective function is \( (0, \infty) \). (Simplify your answer. Type your answer in interval notation.) The vertical height of the garden that will minimize the total area is \( \sqrt{95} \mathrm{~m} \). (Type an exact answer, using radicals as needed.) The horizontal width of the garden that will minimize the total area is

Ask by Murphy Ayala. in the United States
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The horizontal width of the garden that minimizes the total area is \( 2\sqrt{95} \) meters.

Solución

To determine the horizontal width of the garden that minimizes the total area, let's break down the given information and the objective function step by step. ### Given: - **Vertical height of the garden**: \( h \) - **Total area including borders**: \[ \mathrm{A} = \left(\frac{190}{h} + 4\right)(h + 2) \] - **Optimal vertical height**: \[ h = \sqrt{95} \, \text{m} \] ### Objective: Find the **horizontal width** of the garden (\( w \)) that minimizes the total area \( \mathrm{A} \). ### Steps: 1. **Understand the Objective Function**: - The term \( \frac{190}{h} \) represents the **horizontal width of the garden** (\( w \)), since the garden area \( w \times h = 190 \). - The total width including borders is \( w + 4 \), and the total height including borders is \( h + 2 \). 2. **Expressing the Horizontal Width**: \[ \mathrm{A} = \left(\frac{190}{h} + 4\right)(h + 2) \] Here, \( \frac{190}{h} \) is the garden's width \( w \). 3. **Calculate \( w \) at Optimal \( h \)**: \[ w = \frac{190}{h} \] Substituting \( h = \sqrt{95} \): \[ w = \frac{190}{\sqrt{95}} = \frac{190}{\sqrt{95}} \times \frac{\sqrt{95}}{\sqrt{95}} = \frac{190\sqrt{95}}{95} = 2\sqrt{95} \, \text{m} \] ### Final Answer: The horizontal width of the garden that minimizes the total area is: \[ 2\sqrt{95} \, \text{m} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the horizontal width of the garden that will minimize the total area, we start with the expression for A: \[ \mathrm{A} = \left(\frac{190}{\mathrm{~h}}+4\right)(\mathrm{h}+2) \] By substituting \( h = \sqrt{95} \), we can find the corresponding width. The width is given by: \[ \mathrm{W} = \frac{190}{h} + 4 \] Calculating this for \( h = \sqrt{95} \): \[ \mathrm{W} = \frac{190}{\sqrt{95}} + 4 \] Simplifying gives: \[ \mathrm{W} = \frac{190 + 4\sqrt{95}}{\sqrt{95}} \] Thus, the horizontal width that minimizes the total area is \( \frac{190 + 4\sqrt{95}}{\sqrt{95}} \) meters. This value will provide the dimensions needed for optimal garden design!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad