eet h be the vertical height of the garden and let A be the total area of the garden and borders. Write the objective function \( \mathrm{A}=\left(\frac{190}{\mathrm{~h}}+4\right)(\mathrm{h}+2) \) (Type an expression.) The interval of interest of the objective function is \( (0, \infty) \). (Simplify your answer. Type your answer in interval notation.) The vertical height of the garden that will minimize the total area is \( \sqrt{95} \mathrm{~m} \). (Type an exact answer, using radicals as needed.) The horizontal width of the garden that will minimize the total area is
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine the horizontal width of the garden that will minimize the total area, we start with the expression for A: \[ \mathrm{A} = \left(\frac{190}{\mathrm{~h}}+4\right)(\mathrm{h}+2) \] By substituting \( h = \sqrt{95} \), we can find the corresponding width. The width is given by: \[ \mathrm{W} = \frac{190}{h} + 4 \] Calculating this for \( h = \sqrt{95} \): \[ \mathrm{W} = \frac{190}{\sqrt{95}} + 4 \] Simplifying gives: \[ \mathrm{W} = \frac{190 + 4\sqrt{95}}{\sqrt{95}} \] Thus, the horizontal width that minimizes the total area is \( \frac{190 + 4\sqrt{95}}{\sqrt{95}} \) meters. This value will provide the dimensions needed for optimal garden design!
preguntas relacionadas
