A certain person had a brain that weighed 1.25 kg and contained \( 2.49 \times 10^{15} \) cella. Part 1 of 2 Assuming that each cell was completely Filied whth water (density \( =1.00 \frac{\mathrm{~g}}{\mathrm{~mL}} \)., calculate the liength of one side of sueh a cell if it were a cube. Round your answer to 3 significant digits. \( \square \) 0.00360 cm Part: 1 / 2 Part 2 of 2 If the cells were spread out into a thin layer that was a single cell thick, what would be the total surface area (in square meters) for the top side of the cell layer? Round your answer to 3 significant digits. \( \square \) \( m^{2} \) \( \square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the total surface area for the top side of the cell layer, we first need to calculate the volume of a single cell. Given that the total number of cells is \( 2.49 \times 10^{15} \), we can use the total volume filled with water: 1. Total volume = mass/density = \( 1250 \, \text{g} / 1.00 \, \text{g/mL} = 1250 \, \text{mL} = 1250 \, \text{cm}^3 \). 2. Volume of a single cell = total volume / number of cells = \( 1250 \, \text{cm}^3 / 2.49 \times 10^{15} \approx 5.02 \times 10^{-13} \, \text{cm}^3 \). Now, since the cells are cubes, the volume \( V = a^3 \) where \( a \) is the side length of one cube. Solving for \( a \): \[ a = (5.02 \times 10^{-13})^{1/3} \approx 8.00 \times 10^{-5} \, \text{cm} = 0.0000800 \, \text{cm} \] Now we need to find the total surface area when the cells are spread into a single layer. If each cell occupies \( a^2 \) on the surface, the total surface area for all cells would be: \[ \text{Total surface area} = a^2 \times \text{number of cells} = (8.00 \times 10^{-5} \, \text{cm})^2 \times 2.49 \times 10^{15} \] Calculating this gives: \[ \text{Total surface area} = 6.40 \times 10^{-9} \, \text{cm}^2 \times 2.49 \times 10^{15} \approx 159.36 \, \text{m}^2 \] Thus, the total surface area for the top side of the cell layer is approximately: \( \square \) \( 159 \, m^2 \) \( \square \)