Suppose that a ball is rolling down a ramp. The distance traveled ty the ball is given by the function \( s(t)=2 t^{2} \), where \( t \) is the time, in seconds, after the ball is released, and \( s(t) \) is measured in feet. Find the bali's average velocity in each of the following time intervals. a. \( 11-4 \mathrm{w} \cdot 2-0 \) \[ \frac{\Delta s}{\Delta t}=10 \mathrm{ft} / \mathrm{sec} \] b. \( t_{1}=2 \) to \( t_{2}=25 \) \[ \frac{\Delta s}{\Delta t}=9 \mathrm{tt} / \mathrm{sec} \] c. \( \mathrm{t}_{1}=2 \) to \( \mathrm{t}_{2}=201 \) \( \frac{\Delta s}{\Delta t}= \) \( \square \) \( \mathrm{H} / \mathrm{sec} \) (Type an exact answer, using integers or decinals)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the average velocity over the specified time intervals, we use the formula for average velocity \(\frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}\). For the interval from \(t_1 = 2\) to \(t_2 = 201\): 1. Calculate \(s(2)\): \[ s(2) = 2(2^2) = 2(4) = 8 \text{ ft} \] 2. Calculate \(s(201)\): \[ s(201) = 2(201^2) = 2(40401) = 80802 \text{ ft} \] 3. Now find \(\Delta s\) and \(\Delta t\): \[ \Delta s = s(201) - s(2) = 80802 - 8 = 80894 \text{ ft} \] \[ \Delta t = 201 - 2 = 199 \text{ sec} \] 4. Now calculate the average velocity: \[ \frac{\Delta s}{\Delta t} = \frac{80894}{199} \approx 406.56 \text{ ft/sec} \] So, the average velocity from \(t_1=2\) to \(t_2=201\) is approximately \(406.56 \text{ ft/sec}\).
preguntas relacionadas
