Compare Fractions Compare. Write \( >,< \), or \( = \) for each \( \begin{array}{lll}\text { 5. } \frac{1}{5} \bigcirc \frac{1}{15} & \text { 6. } \frac{17}{10} \bigcirc \frac{17}{5} & \text { 7. } \frac{5}{25} \\ \text { 8. } \frac{12}{27} \bigcirc \frac{6}{9} & \text { 9. } \frac{11}{16} & \frac{2}{8}\end{array} \) 11. Liam bought \( \frac{5}{8} \) pound of cherries. Harrison bought more cherries tha
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To compare the fractions, it's helpful to find a common denominator or convert them to decimals. Here’s how they stack up: 1. \( \frac{1}{5} \) and \( \frac{1}{15} \): The first fraction is larger since \( \frac{1}{5} = \frac{3}{15} \), so \( \frac{1}{5} > \frac{1}{15} \). 2. \( \frac{17}{10} \) and \( \frac{17}{5} \): The second fraction is larger because \( \frac{17}{5} = \frac{34}{10} \), so \( \frac{17}{10} < \frac{17}{5} \). 3. \( \frac{5}{25} \): Simplifies to \( \frac{1}{5} \), which we can compare to others if needed. 4. \( \frac{12}{27} \approx 0.44 \) and \( \frac{6}{9} = \frac{2}{3} \approx 0.67 \), thus \( \frac{12}{27} < \frac{6}{9} \). 5. \( \frac{11}{16} \approx 0.6875 \) and \( \frac{2}{8} = \frac{1}{4} = 0.25 \), so \( \frac{11}{16} > \frac{2}{8} \). Final comparisons are: 5. > 6. < 7. = (if comparing \( \frac{5}{25} \) with either) 8. < 9. > As for cherries, if Harrison bought more than \( \frac{5}{8} \) of a pound, they must have opted for at least \( \frac{7}{8} \) or a full pound to stand out!