Pregunta
upstudy study bank question image url

Writing and Graphing the Reflection of an Exponential Function
Find and graph the equation for a function, , that reflects about the -axis. State
its domain, range, and asymptote.

Ask by Marsh Morrison. in the United States
Mar 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • Domain: All real numbers
  • Range: All negative real numbers
  • Asymptote:
The graph of is an exponential function that starts very low for negative , crosses the point , and approaches the horizontal line without ever touching it, remaining below it.

Solución

Below is a step‐by‐step solution in markdown with LaTeX formulas:

Step 1. Write the Equation for

A reflection of the function about the -axis is found by multiplying the function by . Given
the reflected function is

Step 2. Determine the Domain

For the original function , the domain is all real numbers. Since reflecting about the -axis does not affect the domain, we have:

Step 3. Determine the Range

The function is always positive for any real (i.e., its range is ). Reflecting it about the -axis (by multiplying by ) makes all values negative. Therefore, the range of is:

Step 4. Identify the Asymptote

The original function has a horizontal asymptote at because as , the function tends to . Reflecting it over the -axis keeps the horizontal asymptote unchanged:

Step 5. Graphing the Function

On the graph:
  • is an exponential function.
  • For , .
  • As , so from below (but never reaches ).
  • As , so .
Thus, the graph starts very low for very negative , crosses the point , and then approaches the horizontal line without ever touching it, remaining below it.

Final Answer

  • Function:
  • Domain:
  • Range:
  • Horizontal Asymptote:
This completes the step-by-step process for writing and graphing the reflection of the given exponential function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To reflect the function about the -axis, you need to multiply it by -1. Therefore, the reflected function is . The domain remains all real numbers, , while the range changes to since the function now outputs negative values. The horizontal asymptote moves from to as it approaches from below.
When you graph , the curve will descend from the left, starting near and approaching negative infinity as increases. This transformation is a great reminder that reflections can dramatically change a function’s appearance while keeping the mathematical relationships alive!
When grappling with exponential equations, always check the end behavior! A common mistake is overlooking the asymptote. Don’t forget: even after reflection, your horizontal asymptote remains at – now just approached from below. And remember to label that range correctly; it gets sneaky with negatives!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad