Pregunta
upstudy study bank question image url

Find the density of seawater at a depth where the pressure is 740 atm if the density at the surface is \( 1100 \mathrm{~kg} / \mathrm{m}^{3} \). Seawater has a bulk modulus of \( 2.3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \). Bulk modulus is defined to be \[ B \equiv \frac{\rho_{0} \Delta P}{\Delta \rho} \] Answer in units of \( \mathrm{kg} / \mathrm{m}^{3} \).

Ask by Bolton Frazier. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The density of seawater at 740 atm is approximately 1136 kg/m³.

Solución

We are given the following information: • Surface density, ρ₀ = 1100 kg/m³ • Increase in pressure, ΔP = 740 atm • Bulk modulus, B = 2.3 × 10⁹ N/m² The pressure in SI units must be in pascals. Since 1 atm = 101325 Pa, we have:   ΔP = 740 atm × 101325 Pa/atm ≈ 7.498 × 10⁷ Pa The bulk modulus is defined by the equation:   B = (ρ₀ ΔP) / (Δρ) where Δρ = ρ - ρ₀ is the change in density. We can solve for Δρ as follows:   Δρ = (ρ₀ ΔP) / B Plug in the values:   Δρ = (1100 kg/m³ × 7.498 × 10⁷ Pa) / (2.3 × 10⁹ N/m²) First, compute the numerator:   Numerator = 1100 × 7.498 × 10⁷ ≈ 8.248 × 10¹⁰ (kg·Pa/m³) Now, divide by the bulk modulus:   Δρ ≈ (8.248 × 10¹⁰) / (2.3 × 10⁹) ≈ 35.86 kg/m³ Now, the density at the given depth is the sum of the original density and the change:   ρ = ρ₀ + Δρ ≈ 1100 kg/m³ + 35.86 kg/m³ ≈ 1135.86 kg/m³ Rounded appropriately, the density of seawater at a pressure of 740 atm is approximately 1136 kg/m³.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the density of seawater at a depth where the pressure is 740 atm, we can use the relationship given by the bulk modulus. First, we need to convert pressures into pascals and solve for the change in density. 1. **Convert pressure to pascals:** \[ 740 \, \text{atm} \times 101325 \, \text{Pa/atm} = 74970000 \, \text{Pa} \] 2. **Using the bulk modulus formula, we can rearrange it as follows:** \[ \Delta \rho = \frac{\rho_0 \Delta P}{B} \] Here, \(\Delta P\) is the pressure at depth, \(\rho_0\) is the initial density, and \(B\) is the bulk modulus. 3. **Calculate \(\Delta \rho\):** \[ \Delta \rho = \frac{1100 \, \text{kg/m}^3 \times 74970000 \, \text{Pa}}{2.3 \times 10^9 \, \text{N/m}^2} \] \[ \Delta \rho \approx \frac{82467000000 \, \text{kg/m}^3 \cdot \text{Pa}}{2.3 \times 10^9 \, \text{N/m}^2} \approx 35.9 \, \text{kg/m}^3 \] 4. **Calculate the new density at that depth:** \[ \text{New density} = \rho_0 + \Delta \rho \approx 1100 \, \text{kg/m}^3 + 35.9 \, \text{kg/m}^3 \approx 1135.9 \, \text{kg/m}^3 \] Therefore, the density of seawater at a depth where the pressure is 740 atm is approximately **1135.9 kg/m³**.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad