Pregunta

Given a geometric sequence where the first term is 5 and the common ratio is 3, find the sum of the first 4 terms.

Ask by Clarke Clarke. in Zambia
Jan 05,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sum of the first four terms is 200.

Solución

To find the sum of the first four terms of a geometric sequence with a first term of \( 5 \) and a common ratio of \( 3 \), follow these steps: ### Geometric Sequence Basics A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a constant called the **common ratio** (\( r \)). The formula for the \( n \)-th term of a geometric sequence is: \[ a_n = a_1 \times r^{(n-1)} \] where: - \( a_n \) is the \( n \)-th term, - \( a_1 \) is the first term, - \( r \) is the common ratio, - \( n \) is the term number. ### Sum of the First \( n \) Terms The sum of the first \( n \) terms (\( S_n \)) of a geometric sequence can be calculated using the formula: \[ S_n = a_1 \times \frac{r^n - 1}{r - 1} \] provided that \( r \neq 1 \). ### Applying the Formula Given: - First term (\( a_1 \)) = 5 - Common ratio (\( r \)) = 3 - Number of terms (\( n \)) = 4 Plugging these values into the sum formula: \[ S_4 = 5 \times \frac{3^4 - 1}{3 - 1} \] Calculate \( 3^4 \): \[ 3^4 = 81 \] Subtract 1: \[ 81 - 1 = 80 \] Divide by \( 3 - 1 = 2 \): \[ \frac{80}{2} = 40 \] Multiply by the first term: \[ S_4 = 5 \times 40 = 200 \] ### Verification by Listing the Terms For clarity, let's list the first four terms and sum them: 1. **First term (\( a_1 \))**: \[ a_1 = 5 \] 2. **Second term (\( a_2 \))**: \[ a_2 = a_1 \times r = 5 \times 3 = 15 \] 3. **Third term (\( a_3 \))**: \[ a_3 = a_2 \times r = 15 \times 3 = 45 \] 4. **Fourth term (\( a_4 \))**: \[ a_4 = a_3 \times r = 45 \times 3 = 135 \] Now, sum these terms: \[ S_4 = a_1 + a_2 + a_3 + a_4 = 5 + 15 + 45 + 135 = 200 \] ### Conclusion The sum of the first four terms of the geometric sequence is **200**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the sum of the first four terms of a geometric sequence, you start by calculating the terms. The first term is 5, the second term is \(5 \times 3 = 15\), the third term is \(15 \times 3 = 45\), and the fourth term is \(45 \times 3 = 135\). Now, adding these terms together gives you: \(5 + 15 + 45 + 135 = 200\). Therefore, the sum of the first four terms is 200. Now, let's dive into some fun facts about geometric sequences and their uses! Geometric sequences are like the magic behind sushi rolls and fractals! Just think about how sushi chefs roll ingredients into layers, with each layer doubling in flavor. Similarly, geometric sequences grow rapidly, making them ideal for modeling things like population growth or the spread of a virus! For anyone looking to dive deeper into this topic, books like "The Art of Mathematics: Coffee Time in Memphis" offer a playful exploration of sequences and series. Or check out "The Joy of x" by Steven Strogatz, which brings a lively approach to exploring mathematical concepts, including sequences, through real-life applications and fascinating anecdotes!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad