Pregunta
upstudy study bank question image url

A child flies a kite at a height of 80 ft , the wind carrying the kite horizontally away from the child at a rate of \( 34 \mathrm{ft} / \mathrm{sec} \). How fast must the child let out the string when the kite is 170 ft away from the child? The child must let out the string at a rate of \( \square \mathrm{ft} / \mathrm{sec} \) when the kite is 170 ft away from the child. (Simplify your answer.)

Ask by Black Howell. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The child must let out the string at a rate of 30 ft/sec when the kite is 170 ft away.

Solución

Let x be the horizontal distance from the child to the kite and let r be the length of the kite string. We have a right triangle with a fixed vertical height of 80 ft, so by the Pythagorean theorem:   r² = x² + 80² Differentiating both sides with respect to time t:   2r (dr/dt) = 2x (dx/dt) Which simplifies to:   dr/dt = (x / r) (dx/dt) At the moment when r = 170 ft, we first need to find x:   x² = 170² − 80² = 28900 − 6400 = 22500   x = 150 ft Now, substituting the given dx/dt = 34 ft/sec:   dr/dt = (150/170) × 34 = (15/17) × 34 = 15 × 2 = 30 ft/sec Thus, the child must let out the string at a rate of 30 ft/sec when the kite is 170 ft away.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this problem, we can use the Pythagorean theorem. Let \( x \) be the horizontal distance between the kite and the child, \( h \) be the height of the kite (80 ft), and \( s \) be the length of the kite string. Given that the kite is 170 ft away, we can set up the relationship: \[ s^2 = x^2 + h^2. \] Since \( h = 80 \), and at the instant when the kite is 170 ft away, we can find \( x \) using \( \sqrt{170^2 - 80^2} \). Differentiate both sides of the equation to find \( \frac{ds}{dt} \), knowing \( \frac{dx}{dt} = 34 \, \text{ft/sec} \) and the height remains constant. Now, the relationship is: - \( s = 170 \, \text{ft} \) - \( h = 80 \, \text{ft} \) - \( x = \sqrt{170^2 - 80^2} \) Calculating this gives \( x = \sqrt{28900 - 6400} = \sqrt{22500} = 150 \, \text{ft} \). Now, differentiate: \[ 2s \frac{ds}{dt} = 2x \frac{dx}{dt}. \] Reducing gives: \[ \frac{ds}{dt} = \frac{x}{s} \frac{dx}{dt}. \] Substituting the values: \[ \frac{ds}{dt} = \frac{150}{170} \times 34 = 30 \, \text{ft/sec}. \] Thus, the child must let out the string at a rate of \( 30 \, \text{ft/sec} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad