\( \overline{K L} \) has a midpoint at \( M(-6,-6) \). Point \( K \) is at \( (-3,-3) \). Find the coordinates of point \( L \). Write the coordinates as decimals or integers. \( L=(\square) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the coordinates of point \( L \), we can use the midpoint formula. The midpoint \( M \) is calculated as follows: \[ M = \left( \frac{x_K + x_L}{2}, \frac{y_K + y_L}{2} \right) \] Given \( M(-6,-6) \) and \( K(-3,-3) \), we can set up the equations: 1. \( \frac{-3 + x_L}{2} = -6 \) 2. \( \frac{-3 + y_L}{2} = -6 \) Now, solving the first equation for \( x_L \): \[ -3 + x_L = -12 \implies x_L = -12 + 3 = -9 \] Now, solving the second equation for \( y_L \): \[ -3 + y_L = -12 \implies y_L = -12 + 3 = -9 \] Thus, the coordinates of point \( L \) are \( L=(-9,-9) \). So, \( L=(-9, -9) \).
