1. The ratio of the measures of the three angles in a triangle is \( 14: 5: 11 \). Find the measures of the angles. Show all work.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the measures of the angles in the triangle with a ratio of \( 14: 5: 11 \), we start by letting the measures of the angles be \( 14x \), \( 5x \), and \( 11x \), where \( x \) is a common multiplier. Since the sum of the angles in any triangle is always \( 180^\circ \), we can set up the following equation: \[ 14x + 5x + 11x = 180^\circ \] Combining the terms on the left side gives us: \[ 30x = 180^\circ \] Now, we solve for \( x \): \[ x = \frac{180^\circ}{30} = 6^\circ \] Now we can find the measures of each angle by multiplying \( x \) with each part of the ratio: 1. The first angle is \( 14x = 14 \times 6^\circ = 84^\circ \). 2. The second angle is \( 5x = 5 \times 6^\circ = 30^\circ \). 3. The third angle is \( 11x = 11 \times 6^\circ = 66^\circ \). Therefore, the measures of the angles in the triangle are \( 84^\circ \), \( 30^\circ \), and \( 66^\circ \). To double-check: - The sum is \( 84^\circ + 30^\circ + 66^\circ = 180^\circ \), confirming that our calculations are correct!
