The coordinates of the endpoints of \( \overline{T U} \) are \( T(2,7) \) and \( U(17,-3) \). Point \( V \) is on \( \overline{T U} \) and divides it such that \( T V: U V \) is \( 1: 4 \). What are the coordinates of \( V \) ? Write your answers as integers or decimals.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the coordinates of point \( V \) that divides the line segment \( \overline{TU} \) in the ratio \( 1:4 \), we can use the section formula. The coordinates of \( V \) can be calculated as follows: The formula for finding the coordinates of a point dividing the segment in the ratio \( m:n \) is: \[ \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \] Here, \( T(2, 7) = (x_1, y_1) \) and \( U(17, -3) = (x_2, y_2) \), while the ratio \( T V: U V \) corresponds to \( m = 1 \) and \( n = 4 \). Now, substituting the values into the formula: \[ x_V = \frac{(1)(17) + (4)(2)}{1 + 4} = \frac{17 + 8}{5} = \frac{25}{5} = 5 \] \[ y_V = \frac{(1)(-3) + (4)(7)}{1 + 4} = \frac{-3 + 28}{5} = \frac{25}{5} = 5 \] Thus, the coordinates of point \( V \) are \( (5, 5) \).
